2792
N. Ramkumar et al.
LETTER
inoethanol afforded the desired amides 13 and 14 along overall yields, respectively. For the first time, we have uti-
with esters 15 and 16 in smaller amounts.
lized the H3PO4-mediated Friedel–Crafts cyclodehydra-
tion as a key step to construct these pyrido[4,3-
b]carbazole alkaloids and observed in situ aerial oxidation
during the course of the reaction.
Following access to amides 13 and 14, we explored the
critical Friedel–Crafts cyclodehydration and ensuing pyr-
idine ring formation, as summarized in Scheme 2. We
were delighted to find that treatment of 13 or 14 with
H3PO4 in air at 150 °C furnished dihydropyridocarbazolo-
nes 17 and 18 in 73% and 71% yields, respectively. Under
these rather forcing conditions, we also observed the for-
mation of the oxidative cleavage products 7 or 8 in trace
amounts.
Acknowledgment
We gratefully acknowledge DST for financial support (Project No
SR/S1/OC-70/2008). N.R. thanks CSIR, India for a Senior Rese-
arch Fellowship and contingency grant.
Supporting Information for this article is available online
O
at
R
NH
10.1055/s-00000083.SunogIpimrfiantoSuIpg
n
fonirtat
ori
H3PO4
trace amounts of
13 or 14
+
7 or 8
air, 150 °C
3–5 h
N
References and Notes
Bn
(1) (a) Knölker, H.-J.; Reddy, K. R. In The Alkaloids; Vol. 65;
Cordell, G. A., Ed.; Elsevier Science: Amsterdam, 2008, 1–
430. (b) Álvarez, M.; Joule, J. A. In The Alkaloids; Vol. 57;
Cordell, G. A., Ed.; Academic Press: New York, 2001, 235.
(c) Gribble, G. W. In Advances in Heterocyclic Natural
Product Synthesis; Vol. 1; Pearson, W. H., Ed.; JAI Press:
Greenwich, CT, 1990, 43. (d) Gribble, G. W. In The
Alkaloids; Vol. 39; Brossi, A., Ed.; Academic Press: New
York, 1990, 239.
(2) Goodwin, S.; Smith, A. F.; Horning, E. C. J. Am. Chem. Soc.
1959, 81, 1903.
(3) (a) Woodward, R. B.; Iacobucci, G. A.; Hochstein, F. A.
J. Am. Chem. Soc. 1959, 81, 4434. (b) Svoboda, G. H.;
Poore, G. A.; Montfort, M. L. J. Pharm. Sci. 1968, 57, 1720.
(c) Kilminster, K. N.; Sainsbury, M.; Webb, B.
17 R = H, 73%
18 R = OMe, 71%
Scheme 2 The key H3PO4-mediated Friedel–Crafts cyclodehydra-
tion
Having assembled the tetracyclic scaffold of the natural
products, two simple transformations remained in order to
access ellipticine (1) and 9-methoxyellipticine (2). This
would involve conversion of the amide group into an
imine followed by the cleavage of the N-benzyl group in
the intermediates 17 and 18.
As shown in Scheme 3, the first of these challenges was
achieved by reductive amination using mild reagents Tf2O
and Et3SiH. This generated N-benzylellipticines 1914 and
20 in good yields. Next, the N-benzyl group was removed
from 19 and 20 by using 10% palladium on carbon to fur-
nish ellipticines 1 and 2 with analytical data consistent
with those previously reported in literatures in all as-
pects.8
Phytochemistry 1972, 11, 389. (d) Ahond, A.; Fernandez,
H.; Julia-Moore, M.; Poupat, C.; Sanchez, V.; Potier, P.;
Kan, S. K.; Sevenet, T. J. Nat. Prod. 1981, 44, 193. (e) Lin,
Y.-M.; Juichi, M.; Wu, R.-Y.; Lee, K.-H. Planta Med. 1985,
51, 545.
(4) (a) Juret, P.; Tanguy, A.; Girard, A.; Le Talaer, J. Y.;
Abbatucci, J. S.; Dat-Xuong, N.; Le Pecq, J. B.; Paoletti, C.
Eur. J. Cancer 1978, 14, 205. (b) Paoletti, C.; Le Pecq,
L.-B.; Dat-Xuong, N.; Juret, P.; Garnier, H.; Amiel, J.-L.;
Rouesse, J. Recent Res. Cancer Res. 1980, 74, 107.
(c) Dodion, P.; Rozencweig, M.; Nicaise, C.; Piccart, M.;
Cumps, E.; Crespeigne, N.; Kisner, D.; Kenis, Y. Eur. J.
Cancer Clin. Oncol. 1982, 18, 519. (d) Juret, P.; Heron, J. F.;
Couette, J. E.; Delozier, T.; Le Talaer, J. Y. Cancer Treat.
Rep. 1982, 66, 1909. (e) Clarysse, A.; Brugarolas, A.;
Siegenthaler, P.; Abele, R.; Cavalli, F.; de Jager, R.; Renard,
G.; Rozencweig, M.; Hansen, H. H. Eur. J. Cancer Clin.
Oncol. 1984, 20, 243.
R
N
Tf2O, pyridine
CH2Cl2
17 or 18
–40 °C to r.t., 1 h
then
Et3SiH, r.t., 5 h
N
Bn
19 R = H, 87%
20 R = OMe, 84%
R
N
(5) (a) Knölker, H.-J.; Reddy, K. R. Chem. Rev. 2002, 102,
4303. (b) Kansal, V. K.; Potier, P. Tetrahedron 1986, 42,
2389. (c) Sainsbury, M. Synthesis 1977, 437. (d) Barone, R.;
Chanon, M. Heterocycles 1981, 16, 1357. (e) Hewlins, M. J.
E.; Oliveira-Campos, A.-M.; Shannon, P. V. R. Synthesis
1984, 289. (f) Gribble, G. W.; Saulnier, M. G. Heterocycles
1985, 23, 1277. (g) Gribble, G. W. Synlett 1991, 289.
(h) Potier, P. Chem. Soc. Rev. 1992, 21, 113. (i) Gribble, G.
W.; Saulnier, M. G.; Obaza-Nutaitis, J. A.; Ketcha, D. M.
J. Org. Chem. 1992, 57, 5891.
H2, Pd/C, MeOH
reflux, 6 h
N
H
1 R = H, 75%
2 R = OMe, 73%
Scheme 3 Synthesis of ellipticine (1) and 9-methoxyellipticine (2)
In summary, we have completed an expedient synthesis
of the pyrido[4,3-b]carbazole alkaloids, ellipticine (1) and
9-methoxyellipticine (2) over seven steps from known
1,4-dimethylcarbazoles (5 and 6) with 23% and 25%
(6) (a) Stiborová, M.; Bieler, C. A.; Wiessler, M.; Frei, E.
Biochem. Pharmacol. 2001, 62, 1675. (b) Stiborová, M.;
Sejbal, J.; Borek-Dohalská, L.; Aimová, D.; Poljaková, J.;
Synlett 2014, 25, 2791–2793
© Georg Thieme Verlag Stuttgart · New York