Siegel et al.
JOCArticle
SCHEME 1. Proposed Mechanism of Biological Activity of
(-)-Irofulven (2)a
SCHEME 2. Retrosynthetic Analysis
aNuca = glutathione, cysteine, or hydride (NADPH). Nucb = DNA
from illudin S through treatment with excess acid and
formaldehyde and has demonstrated greatly enhanced ther-
apeutic potential against several solid tumor systems.5 The
superior pharmacological properties of irofulven (2) are
accompanied by a cytotoxicity markedly lower than that of
illudin S (4).6 Several studies have been directed toward
elucidating the mechanism of biological activity of the
illudins, acylfulvene (1), and irofulven (2) in order to under-
stand the nature of this selective toxicity.7 The mechanism is
believed to involve an initial activation step by conjugate
addition of a hydride (NADPH) or thiol (glutathione or
cysteine) nucleophile into the enone moiety followed by
nucleophilic addition of DNA to the strained cyclopro-
pane ring to generate a stable aromatic DNA adduct 18
(Scheme 1). The observed onset of apoptosis is believed to be
a result of DNA alkylation followed by strand cleavage
through this general mechanism. Irofulven (2) is currently
undergoing clinical trials for the treatment of various cancers
as both a monotherapy and in combination with other
chemotherapeutics.8
The promising antitumor properties and the highly reac-
tive molecular framework of (-)-irofulven (2) and other
illudins have rendered them interesting synthetic targets.9
Our laboratory has disclosed concise enantioselective synth-
eses of (-)-acylfulvene (1) and (-)-irofulven (2).10 Key
features of our approach include a stereoselective aldol
addition of a strained ketenehemithioacetal 26, which se-
cures the C2 stereocenter and enables ready access to alde-
hyde (þ)-22 (Scheme 2). A key enyne ring-closing metathesis
(EYRCM)11 cascade reaction of trienyne 21 generates the
AB-ring system 20. A reductive allylic transposition then sets
the stage for the final ring-closing olefin metathesis (RCM)
to build the C-ring and complete the syntheses of (-)-
acylfulvene (1) and (-)-irofulven (2). Herein we describe
the development of our general synthetic strategy to these
fascinating molecules.
(5) McMorris, T. C.; Kelner, M. J.; Wang, W.; Yu, J.; Estes, L. A.; Taetle,
R. J. Nat. Prod. 1996, 59, 896.
(6) Woynarowsky, J. M.; Napier, C.; Koester, S. K.; Chen, S.-F.; Troyer,
D.; Chapman, W.; MacDonald, J. R. Biochem. Pharmacol. 1997, 54, 1181.
(7) (a) McMorris, T. C.; Kelner, M. J.; Chadha, R. K.; Siegel, J. S.; Moon,
S.; Moya, M. M. Tetrahedron 1989, 45, 5433. (b) McMorris, T. C.; Kelner,
M. J.; Wang, W; Yu, J.; Estes, L. A.; Taetle, R. Chem. Res. Toxicol. 1990, 3,
574. (c) Gregerson, L. N.; McMorris, T. C.; Siegel, J. S.; Baldridge, K. K.
Helv. Chim. Acta 2003, 86, 4133. (d) Dick, R. A.; Yu, X.; Kensler, T. W. Clin.
Cancer Res. 2004, 10, 1492. (e) Gong, J.; Vaidyanathan, V. G.; Yu, X.;
Kensler, T. W.; Peterson, L. A.; Sturla, S. J. J. Am. Chem. Soc. 2007, 129,
2101. (f) Neels, J. F.; Gong, J.; Yu, X.; Sturla, S. J. Chem. Res. Toxicol. 2007,
20, 1513.
Results and Discussion
Synthesis of Key Aldehyde 22. Since aldehyde 22 contains
the reactive cyclopropane and tertiary alcohol substruc-
ture common to acylfulvene (1), irofulven (2), and most
members of the illudin family, its efficient synthesis was of
critical importance. Initially, we developed a synthetic route
that enabled us to rapidly generate large quantities of the
racemic aldehyde 22 for evaluation of our synthetic strategy
(Scheme 3).12 This route involved treatment of pentane-2,4-
dione (27) with 1,2-dibromoethane and potassium carbonate
(8) (a) Alexandre, J.; Raymond, E.; Kaci, M. O.; Brian, E. C.; Lokiec, F.;
Kahatt, C.; Faivre, S.; Yovine, A.; Goldwasser, F.; Smith, S. L.; MacDonald,
J. R.; Misset, J.-L.; Cvitkovic, E. Clin. Cancer Res. 2004, 10, 3377. (b) Serova,
M.; Calvo, F.; Lokiec, F.; Koeppel, F.; Poindessous, V.; Larsen, A. K.; Van
Laar, E. S.; Waters, S. J.; Cvitkovic, E.; Raymond, E. Cancer Chemother.
Pharmacol. 2006, 57, 491. (c) Seiden, M. V.; Gordon, A. N.; Bodurka, D. C.;
Matulonis, U. A.; Penson, R. T.; Reed, E.; Alberts, D. S.; Weems, G.; Cullen,
M.; McGuire, W. P., III Gynecol. Oncol. 2006, 101, 55. (d) Hilgers, W.;
Faivre, S.; Chieze, S.; Alexandre, J.; Lokiec, F.; Goldwasser, F.; Raymond,
E.; Kahatt, C.; Taamma, A.; Weems, G.; MacDonald, J. R.; Misset, J. -L.;
Cvitkovic, E. Invest. New Drugs 2006, 24, 311. (e) Paci, A.; Rezai, K.;
Deroussent, A.; De Valeriola, D.; Re, M.; Weill, S.; Cvitkovic, E.; Kahatt,
C.; Shah, A.; Waters, S.; Weems, G.; Vassal, G.; Lokeic, F. Drug Metab.
Dispos. 2006, 34, 1918. (f) Wang, Y.; Wiltshire, T.; Senft, J.; Wenger, S. L.;
Reed, E.; Wang, W. Mol. Cancer Ther. 2006, 5, 3153. (g) Yeo, W.; Boyer, M.;
Chung, H. C.; Ong, S. Y. K.; Lim, R.; Zee, B.; Ma, B.; Lam, K. C.; Mo, F. K.
F.; Ng, E. K. W.; Ho, R.; Clarke, S.; Roh, J. K.; Beale, P.; Rha, S. Y.; Jeung,
H. C.; Soo, R.; Goh, B. C.; Chan, A. T. C. Cancer Chemother. Pharmacol.
2006, 59, 295. (h) Wiltshire, T.; Senft, J.; Wang, Y.; Konat, G. W.; Wenger, S.
L.; Reed, E.; Wang, W. Mol. Pharmacol. 2007, 71, 1051. (i) Alexandre, J.;
Kahatt, C.; Berthault-Cvitkovic, F.; Faivre, S.; Shibata, S.; Hilgers, W.;
Goldwasser, F.; Lokiec, F.; Raymond, E.; Weems, G.; Shah, A.; MacDo-
nald, J. R.; Cvitkovic, E. Invest. New Drugs 2007, 25, 453. (j) Escargueil, A.
E.; Poindessous, V.; Soares, D. G.; Sarasin, A.; Cook, P. R.; Larsen, A. K.
J. Cell Sci. 2008, 121, 1275. (k) Kelner, M. J.; McMorris, T. C.; Rojas, R. J.;
Estes, L. A.; Suthipinijtham, P. Invest. New Drugs 2008, 26, 407. (l) Kelner,
M. J.; McMorris, T. C.; Rojas, R. J.; Estes, L. A.; Suthipinijtham, P. Cancer
Chemother. Pharmacol. 2008, 63, 19. (m) Dings, R. P. M.; Van Laar, E. S.;
Webber, J.; Zhang, Y.; Griffin, R. J.; Waters, S. J.; MacDonald, J. R.; Mayo,
K. H. Cancer Lett. 2008, 265, 270.
(9) For total synthesis of illudin M (1), see: (a) Matsumoto, T.; Shirahama,
H.; Ichihara, A.; Shin, H.; Kagawa, S.; Sakan, F.; Matsumoto, S.; Nishida, S.
J. Am. Chem. Soc. 1968, 90, 3280. (b) Matsumoto, T.; Shirahama, H.; Ichihara,
A.; Shin, H.; Kagawa, S.; Sakan, S.; Miyano, K. Tetrahedron Lett. 1971, 2049.
(c) Kinder, F. R.; Bair, K. W. J. Org. Chem. 1994, 59, 6965. For representative
synthetic studies towards illudins, see: (d) Padwa, A.; Sandanayaka, V. P.;
Curtis, E. A. J. Am. Chem. Soc. 1994, 116, 2667. (e) Primke, H.; Sarin, G. S.;
Kohlstruk, S.; Adiwidjaja, G.; de Meijere, A. Chem. Ber. 1994, 127, 1051.
Synthesis of (-)-1: (f) Brummond, K. M.; Peterson, J. J. Am. Chem. Soc. 2000,
122, 4915. (g) McMorris, T. C.; Staake, M. D.; Kelner, M. J. J. Org. Chem.
2004, 69, 619. (h) Gong, J.; Neels, J. F.; Yu, X.; Kensler, T. W.; Peterson, L. A.;
Sturla, S. J. J. Med. Chem. 2006, 49, 2593.
(10) Movassaghi, M.; Piizzi, G.; Siegel, D. S.; Piersanti, G. Angew. Chem.,
Int. Ed. 2006, 45, 5859.
(11) For representative examples, see: (a) Kim, S.-H.; Bowden, N.;
Grubbs, R. H. J. Am. Chem. Soc. 1994, 116, 10801. (b) Zuercher, W. J.;
Scholl, M.; Grubbs, R. H. J. Org. Chem. 1998, 63, 4291. (c) Layton, M. E.;
Morales, C. A.; Shair, M. D. J. Am. Chem. Soc. 2002, 124, 773.
(d) Fukumoto, H.; Takanishi, K.; Ishihara, J.; Hatakeyama, S. Angew.
Chem., Int. Ed. 2006, 45, 2731. For a review, see: (e) Nicolaou, K. C.;
Bulger, P. G.; Sarlah, D. Angew. Chem., Int. Ed. 2005, 44, 4490.
(12) Movassaghi, M.; Piizzi, G.; Siegel, D. S.; Piersanti, G. Tetrahedron
Lett. 2009, 50, 5489.
J. Org. Chem. Vol. 74, No. 24, 2009 9293