6758
C.-T. Chang et al. / Bioorg. Med. Chem. Lett. 19 (2009) 6755–6758
5. Yin, H.; Havrilla, C. M.; Gao, L.; Morrow, J. D.; Porter, N. A. J. Biol. Chem. 2003,
278, 16720.
6. (a) Pudukulathan, Z.; Manna, S.; Hwang, S. W.; Khanapure, S. P.; Lawson, J. A.;
FitzGerald, G. A.; Rokach, J. J. Am. Chem. Soc. 1998, 120, 11953; (b) Jacobo, S. H.;
Chang, C. T.; Lee, G. J.; Lawson, J. A.; Powell, W. S.; Pratico, D.; FitzGerald, G. A.;
Rokach, J. J. Org. Chem. 2006, 71, 1370; (c) Taber, D. F.; Herr, R. J.; Gleave, D. M. J.
Org. Chem. 1997, 62, 194; (d) Taber, D. F.; Xu, M.; Hartnett, J. C. J. Am. Chem. Soc.
2002, 124, 13121; (e) Larock, R. C.; Lee, N. H. J. Am. Chem. Soc. 1991, 113, 7815;
(f) Zanoni, G.; Fabio, A.; Meriggi, A.; Vidari, G. Tetrahedron: Asymmetry 2001, 12,
1779; (g) Schrader, T. O.; Snapper, M. L. J. Am. Chem. Soc. 2002, 124, 10998; (h)
Quan, L. G.; Cha, J. K. J. Am. Chem. Soc. 2002, 124, 12424; (i) Rodriguez, A. R.;
Spur, B. W. Tetrahedron Lett. 2002, 43, 4575; (j) Mulzer, J.; Czybowski, M.; Bats,
J. W. Tetrahedron Lett. 2001, 42, 2961.
7. Montine, T. J.; Neely, D. M.; Quinn, J. F.; Beal, F. M.; Markesbery, W. R.; Roberts,
L. J., II; Morrow, J. D. Free Radical Biol. Med. 2002, 33, 620.
8. Lawson, J. A.; Kim, S.; Powell, W. S.; FitzGerald, G. A.; Rokach, J. J. Lipid Res.
2006, 47, 2515.
9. Gao, L.; Yin, H.; Milne, G. L.; Porter, N. A.; Morrow, J. D. J. Biol. Chem. 2006, 281,
14092.
Figure 1. High Performance Liquid Chromatography: The UHPLC was performed
using an Accela solvent delivery system (Thermo, Waltham, MA) and a column of
Hypersil GOLD C18 (2) (200 mm  2.1 mm; 1.9
lm particle size column; Thermo).
The mobile phase consisted of water (solvent A) and acetonitrile:methanol (95:5,
10. Kadiiska, M. B.; Gladen, B. C.; Baird, D. D.; Germolec, D.; Graham, L. B.; Parker,
C. E.; Nyska, A.; Wachsman, J. T.; Ames, B. N.; Basu, S.; Brot, N.; FitzGerald, G. A.;
Floyd, R. A.; George, M.; Heinecke, J. W.; Hatch, G. E.; Hensley, K.; Lawson, J. A.;
Marnett, L. J.; Morrow, J. D.; Murray, D. M.; Plastaras, J.; Roberts, L. J., II; Rokach,
J.; Shigenaga, M. K.; Sohal, R. S.; Sun, J.; Tice, R. R.; VanThiel, D. H.; Wellner, D.;
Walter, P. B.; Tomer, K. B.; Mason, R. P.; Barrett, J. C. Free Radical Biol. Med. 2005,
38, 698.
11. Kadiiska, M. B.; Gladen, B. C.; Baird, D. D.; Graham, L. B.; Parker, C. E.; Ames, B.
N.; Basu, S.; FitzGerald, G. A.; Lawson, J. A.; Marnett, L. J.; Morrow, J. D.; Murray,
D. M.; Plastaras, J.; Roberts, L. J., II; Rokach, J.; Shigenaga, M. K.; Sun, J.; Walter,
P. B.; Tomer, K. B.; Barrett, J. C.; Mason, R. P. Free Radical Biol. Med. 2005, 38,
711.
solvent B), both with 0.005% acetic acid adjusted to pH 5.7 with ammonium
hydroxide. The flow rate was 350
solvent gradient programs.
ll/min. The separations involved various linear
32 resulted in very low yield of the iodo derivative, probably due to
volatility problems. As shown in Scheme 3, phosphonium salt 41
was prepared in good yield by a similar sequence (Panel B). Scheme
4 describes the stereospecific synthesis of d4-5-epi-8,12-iso-iPF3
-
a
VI 55 and d4-8,12-iso-iPF3 -VI 64.18 For reasons of clarity we have
a
included the first few structures, which we have previously dis-
closed.15 Step u, Scheme 4B afforded in addition to the desired
product 60, 8–9% of the cis derivative 59. The isomerization proce-
dure works well also on the crude mixture and no special purifica-
tion and isolation of 59 is necessary. The transformation of bis-TES
56 to a TES aldehyde 57 was accomplished in high yields using
Spur’s procedure.19
Metabolism: The iPs 24 and 25 (Scheme 2) can be formed by the
direct autooxidation of EPA as shown in Scheme 1. Alternatively,
these iPs can be formed as a result of b-oxidation of DHA-derived
neuroprostanes (nPs) as shown in Scheme 5, which we have previ-
ously demonstrated in the case of isomers of 65.8 Furthermore we
and others have shown the DHA-derived nPs could not be detected
in urine, a fact we interpreted as being due to b-oxidation.8,9 Since
iPs such as 24 and 25 are resistant to b-oxidation we were readily
able to measure them in urine. Hence the measurement of 24 and
25, which we have accomplished in human and murine urine,14 is
an indication of the in vivo formation of either or both EPA-derived
iPs and DHA-derived nPs that have been converted to the corre-
sponding C20 derivatives by endogenous b-oxidation. Figure 1 shows
LC/MS/MS chromatogram of tetradeutero isoprostones 55 and 64.
12. Praticò, D.; Rokach, J.; Lawson, J.; FitzGerald, G. A. Chem. Phys. Lipids 2004, 128,
165.
13. Chang, C. T.; Patel, P.; Kang, N.; Lawson, J. A.; Song, W. L.; Powell, W. S.;
FitzGerald, G. A.; Rokach, J. Bioorg. Med. Chem. Lett. 2008, 18, 5523.
14. Song, W. L.; Paschos, G.; Fries, S.; Reilly, M. P.; Rokach, J.; Chang, C. T.; Patel, P.;
Lawson, J. A.; FitzGerald, G. A. J. Biol. Chem. 2009, 284, 23636.
15. Kim, S.; Lawson, J. A.; Praticò, D.; FitzGerald, G. A.; Rokach, J. Tetrahedron Lett.
2002, 43, 2801.
16. Patel, P.; Chang, C. T.; Kang, N.; Lee, G. J.; Powell, W. S.; Rokach, J. Tetrahedron
Lett. 2007, 48, 5289.
17. Experimental procedure for Scheme 3a: Step a: To the solution of acetylene 30
(4 g, 28.54 mmol) in 70 mL benzene was added 1 g of Wilkinson’s catalyst
(25 wt %) at room temperature. The mixture was purged with argon gas. The
deuterium gas was passed in the flask until deuterium gas absorption stopped.
The crude mixture was filtered through celite and florisil layers to afford the
desired deuterium product 31 in quantitative yields. Sometimes the
deuteration did not go to completion. In this case, the crude mixture was
filtered and the deuteration process repeated.Steps b and c: To the solution of
deuterium 31 (311 mg, 2.10 mmol) in CH2Cl2 (15 mL), Me2AlCl (6.29 mL,
6.29 mmol) was added dropwise at À25 °C and stirred for 30 min at À25 °C.
The reaction mixture was gradually allowed to reach room temperature and
the reaction continued for 12 h. After all the starting material was consumed
the reaction was quenched using aqueous saturated NaHCO3 solution at 0 °C.
The aqueous layer was extracted with CH2Cl2 and the organic layers combined
and dried using Na2SO4. The solvent was cautiously evaporated up to the point
where approximately 2 mL of CH2Cl2 was left inside the flask. The deuterium
compound 32 was used without further purification in the next step. To the
solution of crude alcohol 32, TsCl was added at 0 °C followed by pyridine and
stirred for 10 min. The reaction mixture was gradually allowed to reach room
temperature and the stirring continued for 12 h. The reaction was quenched by
adding water and extracted using CH2Cl2, then dried and purified by silica gel
chromatography to afford tosylate 33 in 75% combined yield.Step d: To the
solution of tosylate 33 (660 mg, 3 mmol) in 5 mL of CH3CN was added Ph3P
(3 g, 11.4 mmol) and the reaction was continued at 70 °C for 24 h. The solvent
was evaporated and the crude compound purified using silica gel column
chromatography to afford 34 in quantitative yields.Step e: To the solution of
the salt 34 (774 mg, 1.60 mmol) in 15 mL of CH3CN was added NaI (1.2 g,
8.05 mmol) at room temperature and stirred for 12 h. The solvent was
evaporated and the crude mixture purified using column chromatography to
afford the desired iodo salt 35 (683 mg) in 97% yield.
Acknowledgments
We wish to acknowledge the National Institutes of Health for
support under Grants HL-81873 (J.R.) and HL-62250 (G.A.F.). J.R.
also wishes to acknowledge the National Science Foundation for
the AMX-360 (CHE-90-13145) and Bruker 400 MHz (CHE-03-
42251) NMR instruments. G.A.F. is the McNeil Professor of Transla-
tional Medicine and Therapeutics. W.S.P. wishes to acknowledge
the Canadian Institutes of Health Research, grant number MOP-
6254, the Heart and Stroke Foundation of Quebec, and the J.R. Cos-
tello Memorial Research Fund. W.S. wishes to acknowledge the
AHA grant 09CRP2260567.
18. Spectral data of d4-5-epi-8,12-iso-iPF3 -VI 55: 1H NMR (methanol-d4, 400 MHz)
a
d 5.75 (1H, dd, J = 15.3, 10.6), 5.44–5.32 (2H, m), 5.28–5.13 (3H, m), 4.09–3.92
(3H, m), 2.72–2.64 (2H, m), 2.57–2.49 (1H, m), 2.36–2.27 (1H, m), 2.26–2.02
(4H, m), 1.77–1.68 (1H, m), 1.68–1.42 (5H, m), 0.81 (1H, s); 13C NMR
(methanol-d4, 100 MHz) d 177.59, 137.46, 132.48, 130.08, 129.60, 129.41,
128.69, 74.83, 73.09, 72.80, 52.03, 49.86, 43.49, 37.83, 35.13, 26.64, 25.10,
22.37, 13.90(m); spectral data of d4-8,12-iso-iPF3 -VI 64: 1H NMR (methanol-d4,
References and notes
a
400 MHz) d 5.72 (1H, dd, J = 15.4, 10.6), 5.47–5.132 (2H, m), 5.27–5.16 (3H, m),
4.05–3.96 (3H, m), 2.75–2.67 (2H, m), 2.56–2.52 (1H, m), 2.38–2.30 (1H, m),
2.22–1.99 (4H, m), 1.78–1.68 (1H, m), 1.63–1.36 (5H, m), 0.81 (1H, s); 13C NMR
(methanol-d4, 100 MHz) d 177.58, 137.62, 132.65, 131.11, 130.10, 129.59,
128.75, 74.97, 73.96, 72.93, 52.09, 48.63, 43.70, 37.74, 35.06, 26.81, 25.26,
22.41, 13.92 (m).
1. Morrow, J. D.; Hill, K. E.; Burk, R. F.; Nammour, T. M.; Badr, K. F.; Roberts, L. J., II
Proc. Natl. Acad. Sci. U.S.A. 1990, 87, 9383.
2. Lawson, J. A.; Rokach, J.; FitzGerald, G. A. J. Biol. Chem. 1999, 274, 24441.
3. Hwang, S. W.; Adiyaman, M.; Khanapure, S.; Schio, L.; Rokach, J. J. Am. Chem.
Soc. 1994, 116, 10829.
19. Rodriguez, A.; Nomen, M.; Spur, B. W.; Godfroid, J. J. Tetrahedron Lett. 1999, 40,
5161.
4. Rokach, J.; Khanapure, S. P.; Hwang, S. W.; Adiyaman, M.; Schio, L.; FitzGerald,
G. A. Synthesis, First Special Issue, Nat. Products Synth. 1998, 569.