À
Ruthenium-Catalyzed C H Bond Activation of Michael Acceptors
COMMUNICATIONS
2008, 10, 3607–3609; l) S. I. Kozhushkov, D. S. Yufit, L.
Ackermann, Org. Lett. 2008, 10, 3409–3412.
Chem. 2004, 3173–3199; for some recent examples of
the formation of allysilanes: f) R. Shintani, Y. Ichikawa,
T. Hayashi, J. Chen, Y. Nakao, T. Hiyama, Org. Lett.
2007, 9, 4643–4645; g) V. J. Olsson, K. J. Szabꢆ, Org.
Lett. 2008, 10, 3129–3131.
[4] For some recent hydroalkylation reactions: a) M. M. P.
Grutters, C. Mꢅller, D. Vogt, J. Am. Chem. Soc. 2006,
128, 7414–7415; b) T. Nishimura, X. X. Guo, K. Oh-
nishi, T. Hayashi, Adv. Synth. Catal. 2007, 349, 2669–
2672; c) A. S. Tsai, R. G. Bergman, J. A. Ellman, J.
Am. Chem. Soc. 2008, 130, 6316–6317; d) Y. Kuninobu,
K. Kikuchi, Y. Tokunaga, Y. Nishina, K. Takai, Tetrahe-
dron 2008, 64, 5974–5981; e) B. A. McKeown, N. A.
Foley, J. P. Lee, T. B. Gunnoe, Organometallics 2008,
27, 4031–4033; f) H. Harada, R. K. Thalji, R. G. Berg-
man, J. A. Ellman, J. Org. Chem. 2008, 73, 6772–6779.
[5] R. Martinez, R. Chevalier, S. Darses, J. P. Genet,
Angew. Chem. 2006, 118, 8412–8415; Angew. Chem.
Int. Ed. 2006, 45, 8232–8235.
[6] For ruthenium-catalyzed hydroarylation processes
(Murai reaction) see: a) S. Murai, F. Kakiuchi, S.
Sekine, Y. Tanaka, A. Kamatani, M. Sonoda, N. Chata-
ni, Nature 1993, 366, 529–531; b) F. Kakiuchi, S.
Sekine, Y. Tanaka, A. Kamatani, M. Sonoda, N. Chata-
ni, S. Murai, Bull. Chem. Soc. Jpn. 1995, 68, 62–83;
c) M. Sonoda, F. Kakiuchi, N. Chatani, S. Murai, Bull.
Chem. Soc. Jpn. 1997, 70, 3117–3128; d) S. Murai, N.
Chatani, F. Kakiuchi, Pure Appl. Chem. 1997, 69, 589–
594; e) N. Fujii, F. Kakiuchi, A. Yamada, N. Chatani, S.
Murai, Bull. Chem. Soc. Jpn. 1998, 71, 285–298; f) F.
Kakiuchi, S. Murai, Acc. Chem. Res. 2002, 35, 826–834.
[7] R. Martinez, J. P. Genet, S. Darses, Chem. Commun.
2008, 3855–3857.
[10] a) S. Nahm, S. M. Weinreb, Tetrahedron Lett. 1981, 22,
3815–3818; b) review: J. Singh, N. Satyamurthi, I. S.
Aidhen, J. Prakt. Chem. 2000, 342, 340–347.
[11] Preliminary optimizations in the formation of 4ka have
shown that the proportion of allylsilane versus conju-
gated adduct is not greatly influence by the electronic
nature of the ligand, neither by the nature of the sol-
vent; the following conjugated versus allyl ratio were
obtained for some ligand: PPh3 (20:80), (4-
MeOC6H4)3P (24:76), (4-CF3C6H4)3P (17:83), CyPPh2
(25:75). On the contrary, the E/Z ratio for allylic
adduct is depending on the nature of the solvent; the
following E/Z ratio were obtained (reactions conducted
at 90–1008C): toluene (86:14), cyclohexane (92:2), i-
PrOH (97:3), dioxane (97:3).
[12] a) A. Yanagisawa, H. Kageyama, Y. Nakatsuka, K.
Asakawa, Y. Matsumoto, H. Yamamoto, Angew. Chem.
1999, 111, 3916–3919; Angew. Chem. Int. Ed. 1999, 38,
3701–3703; see also: b) M. Wadamoto, N. Ozasa, A.
Yanagisawa, H. Yamamoto, J. Org. Chem. 2003, 68,
5593–5601; c) M. Wadamoto, H. Yamamoto, J. Am.
Chem. Soc. 2005, 127, 14556–14557; d) Review: H. Ya-
mamoto, M. Wadamoto, Chem. Asian J. 2007, 2, 692–
698.
[13] For examples using unfunctionnalized allyltrichlorosi-
lanes: a) S. E. Denmark, J. Fu, J. Am. Chem. Soc. 2001,
123, 9488–9489; b) S. E. Denmark, J. Fu, M. J. Lawler,
J. Org. Chem. 2006, 71, 1523–1536; c) S. Kotani, S. Ha-
shimoto, M. Nakajima, Tetrahedron 2007, 63, 3122–
3132 and references cited therein.
[14] a) T. Matsubara, N. Koga, D. G. Musaev, K. Morokuma,
J. Am. Chem. Soc. 1998, 120, 12692–12693; b) Y.
Guari, S. Sabo-Etienne, B. Chaudret, J. Am. Chem.
Soc. 1998, 120, 4228–4229; c) T. Matsubara, N. Koga,
D. G. Musaev, K. Morokuma, Organometallics 2000, 19,
2318–2329; d) R. F. R. Jazzar, M. F. Mahon, M. K.
Whittlesey, Organometallics 2001, 20, 3745–3751.
[8] For some examples see: a) F. Kakiuchi, Y. Tanaka, T.
Sato, N. Chatani, S. Murai, Chem. Lett. 1995, 24, 679–
680; b) B. M. Trost, K. Imi, I. W. Davies, J. Am. Chem.
Soc. 1995, 117, 5371–5372; c) T. Sato, F. Kakiuchi, N.
Chatani, S. Murai, Chem. Lett. 1998, 27, 893–894; d) F.
Kakiuchi, T. Sato, K. Igi, N. Chatani, S. Murai, Chem.
Lett. 2001, 30, 386–387; e) G. Hughes, M. Kimura, S. L.
Buchwald, J. Am. Chem. Soc. 2003, 125, 11253–11258.
[9] a) A. Hosomi, H. Sakurai, Tetrahedron Lett. 1976, 17,
1295–1298; review on allylsilanes: b) H. Sakurai, Pure
Appl. Chem. 1982, 54, 1–22; c) T. K. Sarkar, Synthesis
1990, 969–983; d) T. K. Sarkar, Synthesis 1990, 1101–
1111; e) L. Chabaud, P. James, Y. Landais, Eur. J. Org.
Adv. Synth. Catal. 2009, 351, 153 – 157
ꢂ 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
157