from aromatic and ion-pairing interactions. In fluorophenyl
derivatives polarity seems to be less important than size and
shape-complementarity. These findings indicate that dispersion
interactions contribute more significantly to aromatic recognition
in aqueous solution. Exploration of further host derivatives
and guest species is underway.
This work was supported by CONACyT J50827Q. We are
grateful to Dr Felipe Medrano for access to the modeling
programs.
Notes and references
z Binding constants were obtained from triplicate experiments and data
averaged from at least five wavelengths. Non-linear fit to a 1 : 1 binding
model in which concentrations of host and guest are of similar magnitude
was used. See H.-J. Schneider and A. K. Yatsimirsky, Principles and
Methods in Supramolecular Chemistry, Wiley, 2000, p. 142.
Fig. 3 (Top) 1H NMR spectra of 1e (1 ꢂ 10ꢁ3 M in D2O). (Bottom)
Changes upon addition of one molar equivalent of AC. Only the
region between 5.5 to 9.0 ppm is shown. R2 and R3 = PO2Hꢁ.
y 1-Naphthylcarbamoyl-20-deoxyadenosine nucleoside containing free
50,30-OH groups is not soluble enough to perform titration experi-
ments in buffer aqueous solutions.
Table 1 19F NMR complexation induced shifts (Dd) in titrations of
nucleotides 1e, 1f and 1g with phenothiazinium dyesa
1 (a) H.-J. Schneider, Angew. Chem., Int. Ed., 2009, 48, 3924;
(b) J.-H. Ryu, D.-J. Hong and M. Lee, Chem. Commun., 2008,
1043; (c) E. A. Meyer, R. K. Castellano and F. Diederich, Angew.
Chem., Int. Ed., 2003, 42, 1210; (d) M. L. Waters, Curr. Opin.
Chem. Biol., 2002, 6, 736; (e) C. A. Hunter, K. R. Lawson,
J. Perkins and C. J. Urch, J. Chem. Soc., Perkin Trans. 2, 2001,
651; (f) S. K. Burley and G. A. Petsko, Science, 1985, 229, 23.
2 For model systems with rotameric or conformational flexible
molecules: (a) F. Cozzi, M. Cinquini, R. Annunziata, T. Dwyer
and J. S. Siegel, J. Am. Chem. Soc., 1992, 114, 5729; (b) E. Kim,
S. Paliwal and C. S. Wilcox, J. Am. Chem. Soc., 1998, 120, 11192;
(c) S. L. Mckay, B. Haptonstall and S. H. Gellman, J. Am. Chem.
Soc., 2001, 123, 1244; (d) M. J. Rashkin and M. L. Waters, J. Am.
Chem. Soc., 2002, 124, 1860; (e) B. W. Gung, X. W. Xue and
Y. Zou, J. Org. Chem., 2007, 72, 2469; (f) W. R. Carroll,
P. Pellechia and K. D. Shimizu, Org. Lett., 2008, 10, 3547.
3 (a) K. M. Guckian, B. A. Schweitzer, R. X. F. Ren, C. J. Sheils,
D. C. Tahmassebi and E. T. Kool, J. Am. Chem. Soc., 2000, 122, 2213;
(b) J. Isaksson and J. Chattopadhyaya, Biochemistry, 2005, 44, 5390.
4 S. Nakano, Y. Uotani, S. Nakashima, Y. Anno, M. Fujii and
N. Sugimoto, J. Am. Chem. Soc., 2003, 125, 8086.
Dye
1e
1f
1gb
MB
AC
TB
ꢁ6.9
+0.472
+0.216
+0.171
+0.174, +0.128, +0.037
+0.081, +0.067, +0.026
+0.252, +0.207, +0.132
ꢁ3.16
ꢁ0.553
a
Dd measured in deuterated water at 25 1C using KF as reference.
ortho, meta and para F positions in 1g, respectively.
b
respectively. As depicted in Fig. 3, the 1H NMR spectra of the
nucleotide 1e in the regions corresponding to the purine
(H2, H8) and the 4-fluorophenyl (Ho, Hm) protons showed
upfield-shifts in the presence of one molar equivalent of the
dye AC, thus indicating that its aromatic surface stacks over
both rings of the nucleotide. Likewise the anomeric proton
(H1) showed the same tendency, supporting a preference of the
dye to stack over one of the faces of the nucleotide. It is worth
noting that only the 50-H-phosphonate was shifted towards
lower fields.
Upon addition of phenothiazine dyes the 19F NMR spectra
of 1e–1g also changed. The induced shifts at 100% complexation
(CIS, Dd) are summarized in Table 1. The MB dye produced
large CIS values in the presence of 1e and 1f, but these changes
occurred in opposite directions displacing the para-F
substituent in 1e upfield, while the 3,5-meta-F in 1f were
shifted downfield. This indicates that the overlap of MB
relative to the substituted phenyl group in these complexes
differs as suggested by molecular modeling (see Fig. S17 ESIw).
The results with nucleotide 1g indicated that the pentafluoro-
phenyl ring does not lie on the same plane as the adenine
group due to steric hindrance of the ortho-F substituents and
the urea carbonyl group. Plausible complexes with 1g gave
interesting cleft-type structures (See Fig. S18 ESIw). The small
downfield displacements measured for complexes between 1g
and phenothiazine dyes (Table 1) are in agreement with this
model structure.
5 (a) D. B. Smithrud, T. B. Wyman and F. Diederich, J. Am. Chem.
Soc., 1991, 113, 5420; (b) C. Jasper, T. Schrader, J. Panitzky and
F.-G. Klarner, Angew. Chem., Int. Ed., 2002, 41, 1355;
(c) M. S. Cubberley and B. L. Iverson, J. Am. Chem. Soc., 2001,
123, 7560.
6 (a) H.-J. Schneider and M. Xue, J. Org. Chem., 1994, 59, 7464;
(b) T. Liu and H.-J. Schneider, Angew. Chem., Int. Ed., 2002, 41, 1368;
(c) M. Sirish and H.-J. Schneider, J. Am. Chem. Soc., 2000, 122, 5881.
7 (a) P. Mukerjee and A. K. Ghosh, J. Am. Chem. Soc., 1970, 92,
6419; (b) E. M. Tuite and J. M. Kelly, Biopolymers, 1995, 35, 419.
8 (a) J. L. Vennerstrom, M. T. Makler, C. K. Angerhofer and
J. A. Williams, Antimicrob. Agents Chemother., 1995, 39, 2671;
(b) J. Jose and K. Burgess, Tetrahedron, 2006, 62, 11021;
(c) G. Song, F. Xing, X. Qu, J. B. Chaires and J. Ren, J. Med.
Chem., 2005, 48, 3471; (d) K. Takasu, T. Shimogama, C. Satoh,
M. Kaiser, R. Brun and M. Ihara, J. Med. Chem., 2007, 50, 2281.
9 (a) C.-H. Chien, M.-K. Leung, J.-K. Su, G.-H. Li, Y.-H. Liu and
Y. Wang, J. Org. Chem., 2004, 69, 1866; (b) S. Rashdan,
M. E. Light and J. Kilburn, Chem. Commun., 2006, 4578.
10 (a) A. M. Martin, R. S. Butler, I. Ghiviriga, R. E. Giessert,
K. A. Abboud and R. K. Castellano, Chem. Commun., 2006,
4413; (b) K. Miyata, A. Kobori, R. Tamamushi, A. Ohkubo,
H. Taguchi, K. Seio and M. Sekine, Eur. J. Org. Chem., 2006,
3626; (c) H. C. Ong and S. C. Zimmerman, Org. Lett., 2006, 8, 1589.
11 (a) J. S. Lai, J. Qu and E. T. Kool, Angew. Chem., Int. Ed., 2003,
42, 5973; (b) S. L. Cockroft, J. Perkins, C. Zonta, H. Adams,
S. E. Spey, C. M. R. Low, J. G. Vinter, K. R. Lawson, C. J. Urchc
In conclusion, our results have shown that extending the
p-surface of 20-deoxyadenosine 30,50-H-phosphonate nucleotides
leads to flat aromatic based receptors that are suitable to
recognize selectively aromatic species in aqueous solutions.
Association constants can be explained by free energy increments
´
and C. A. Hunter, Org. Biomol. Chem., 2007, 5, 1062; (c) S. Perez-
Casas, J. Hernandez-Trujillo and M. Costas, J. Phys. Chem. B,
´
2003, 107, 4167; (d) K. Frey and S. A. Woski, Chem. Commun.,
2002, 2206.
ꢀc
This journal is The Royal Society of Chemistry 2009
6728 | Chem. Commun., 2009, 6726–6728