10.1002/anie.202003468
Angewandte Chemie International Edition
COMMUNICATION
Although solutions of the simple aryl substituted zwitterions
2a and 2b were observed to progress to 1,1-carboboration
products (Figure 1 and Scheme 2), the fate of ferrocenyl
substituted zwitterion 2c was more complex. Reactions of
ethynylferrocene and B(C6F5)3 at 243 K showed complete
consumption of the starting materials and formation of zwitterion
2c. Upon warming to room temperature complex mixtures of
products were obtained without any 1,1-carboboration products.
In one case we were able to obtain a small quantity of product
sufficient for a single-crystal X-ray diffraction analysis. with the he
compound obtained proving to be the result of a complex
trimerization/multiple carboboration reaction to give bicycle 5. We
tentatively propose that this unique product arises as a result of
the longer lifetime of the stabilized ferrocenyl zwitterion 2c
introducing a Lewis acid of similar potency to B(C6F5)3, and thus
sequestering additional alkyne units. Inter- and, subsequent,
intramolecular reaction of ethynylferrocene with the zwitterion 2c,
and concurrent 1,1- and 1,4-carboboration, lead to the
cyclopropylcyclohexene 5 from a single B(C6F5)3 and three alkyne
units.[24]
Juraj Bella for NMR technical advice, and Dr Martin Stanford for
fruitful discussions. F.D. thanks the EPSRC Tier‐2 National HPC
for Doctoral Training for Theory and Modelling in Chemical
Sciences (EP/L015722/1) for providing access to the Dirac cluster
at Oxford.
Keywords: 1,1-carboboration • vinyl cation • mechanistic
investigation • FLP
[1]
For references about main group reactivity see: a) P. P.Power,Nature
2010, 463, 171–177; b) T. A. Engesser, M. R. Lichtenthaler, M. Schleep,
I. Krossing, Chem. Soc. Rev. 2016, 45, 789–899. c) R. L. Melen, Science
2019, 363, 479–484; d) J. R. Lawson, R. L. Melen, Inorg. Chem. 2017,
56, 8627–8643.
[2]
For relevant reviews about FLP chemistry see: a) D. W. Stephan, J. Am.
Chem. Soc. 2015, 137, 10018–10032; b) D. W. Stephan, G. Erker,
Angew. Chem. Int. Ed. 2015, 54, 6400–6441; c) D. W. Stephan, Acc.
Chem. Res. 2015, 48, 306–316; d) J. Paradies, Coord. Chem. Rev. 2019,
380, 170–183; e) J. Lam, K. M. Szkop, E. Mosaferi, D. W. Stephan, Chem.
Soc. Rev. 2019, 48, 3592–3612.
In summary, we have observed, characterized and trapped
the proposed zwitterionic intermediates in 1,1-carboboration
reactions. We have shown that these intermediates, like
carbenium ions, can be stabilized by interactions with a ferrocene
substituent, resulting in increased lifetimes and changes to
reactivity patterns. We are currently investigating the role of in situ
generated alkenyl zwitterions in catalysis and investigating the
mechanism of the formation of 5.
[3]
[4]
B. Wrackmeyer, K. Horchler, R. Boese, Angew. Chem. Int. Ed. 1989, 28,
1500–1502.
a) B. Wrackmeyer, Coord. Chem. Rev. 1995, 145, 125–156; b) B.
Wrackmeyer, S. Bayer, W. Milius, E. V. Klimkina, J. Organomet. Chem.
2018, 865, 80–88.
[5]
[6]
a) G. Kehr, G. Erker, Chem. Commun. 2012, 48, 1839–1850.
a) C. Chen, T. Voss, R. Frꢀhlich, G. Kehr, G. Erker, Org. Lett. 2011, 13,
62–65; b) C. Fan, W. E. Piers, M. Parvez, R. McDonald, Organometallics
2010, 29, 5132–5139; c) K. Škoch, C. Pauly, C. G. Daniliuc, K.
Bergander, G. Kehr, G. Erker, Dalt. Trans. 2019, 48, 4837–4845.
C. Chen,F. Eweiner, B. Wibbeling, R. Fröhlich, S. Senda, Y. Ohki,
K.Tatsumi, S. Grimme, G. Kehr, G. Erker,Chem. An Asian J. 2010, 5,
2199–2208.
[7]
[8]
[9]
C. Jiang, O. Blacque, H. Berke, Organometallics 2010, 29, 125–133.
R. Liedtke, R. Fröhlich, G. Kehr, G. Erker, Organometallics 2011, 30,
5222–5232.
[10] W. Nie, G. Sun, C. Tian, M. V. Borzov, Zeitschrift für Naturforsch. B 2016,
71, 1029–1041.
[11] a) M. A. Dureen, D. W. Stephan, J. Am. Chem. Soc. 2009, 131, 8396–
8397; b) M. A. Dureen, C. C. Brown, D. W. Stephan, Organometallics
2010, 29, 6594–6607; c) J. S. Reddy, B. H. Xu, T. Mahdi, R. Fröhlich, G.
Kehr, D. W. Stephan, G. Erker, Organometallics 2012, 31, 5638–5649;
d) R. L. Melen, M. M. Hansmann, A. J. Lough, A. S. K. Hashmi, D. W.
Stephan, Chem. Eur. J. 2013, 19, 11928–11938; e) K. Chernichenko, Á.
Madarász, I. Pápai, M. Nieger, M. Leskelä, T. Repo, Nat. Chem. 2013, 5,
718–723.
[12] a) T. Wang, C. G. Daniliuc, C. Mück-Lichtenfeld, G. Kehr, G. Erker, J.
Am. Chem. Soc. 2018, 140, 3635–3643; b) P. Vasko, I. A. Zulkifly, M. Á.
Fuentes, Z. Mo, J. Hicks, P. C. J. Kamer, S. Aldridge, Chem. Eur. J. 2018,
24, 10531–10540.
[13] The observation of the red solution and the 1H and 11B chemical shifts
that we observe for 2a are consistent with those reported in reference 10.
Figure 5. Crystal Structure of the cyclotrimerization product (5). Ellipsoids are
set to 50% probability; hydrogen atoms are omitted for clarity. Selected bond
lengths (Å): B(1)–C(1) 1.609(5), B(1)–C(5) 1.507(5), C(1)–C(2) 1.527(4), C(2)–
C(3) 1.523(4), C(3)–C(4) 1.483(4); C(4)–C(5) 1.372(4); C(2)–C(6) 1.564(4);
C(3)–C(6) 1.538(4). Fc = Ferrocenyl, ○ = alkyne units.
[14] a) Z. Rappoport, P. J. Stang, Eds. Wiley: New York, 1997;
b)
T. Müller, M. Juhasz, C. A. Reed, Angew. Chem. Int. Ed. 2004, 43, 1543–
1546; c) P. A. Byrne, S. Kobayashi, E. U. Würthwein, J. Ammer, H. Mayr,
J. Am. Chem. Soc. 2017, 139, 1499–1511.
[15] R. L. Sime, R. J. Sime, J. Am. Chem. Soc. 1974, 96, 892–896.
[16] U. Behrens, J. Organomet. Chem. 1979, 182, 89–98.
[17] A. Z. Kreindlin, M. I Rybinskaya, Russ. Chem. Rev. 2004, 73, 417–432.
[18] K. Mꢁther, R. Frꢀhlich, C. Mꢁck-Lichtenfeld, S. Grimme, M. Oestreich, M.
J. Am. Chem. Soc. 2011, 133, 12442–12444.
Acknowledgements
[19] K. Müther, P. Hrobárik, V. Hrobáriková, M. Kaupp, M. Oestreich, Chem.
A Eur. J. 2013, 19, 16579–16594.
MJC and SPT thank the University of Edinburgh for funding. SPT
thanks the Royal Society for a URF. All thank the EPSRC and
CRITICAT CDT for financial support (EP/L016419/1). All thank Mr.
[20] A. R. Nödling, K. Müther, V. H. G. Rohde, G. Hilt, M. Oestreich,
Organometallics 2014, 33, 302–308.
4
This article is protected by copyright. All rights reserved.