7222
G. C. Nandi et al. / Tetrahedron Letters 50 (2009) 7220–7222
O
R1
O
H2N
R2
R1
R1
OH
H
H
R1
O
O
OH
O
P2O5
R2
N
H
OH
o-QMs
Scheme 2. Tentative mechanism showing the formation of amidoalkyl naphthol.
7. Hulst, R.; Heres, H.; Peper, N. C. M. W.; Kellogg, R. M. Tetrahedron: Asymmetry
1996, 7, 1373; (b) Li, X.; Yeung, C.-H.; Chan, A. S. C.; Yang, T.-K. Tetrahedron:
Asymmetry 1999, 10, 759.
8. Kantevari, S.; Vuppalapati, S. V. N.; Nagarapu, L. Catal. Commun. 2007, 8, 1857.
9. Selvam, N. P.; Perumal, P. T. Tetrahedron Lett. 2006, 47, 7481.
10. (a) Das, B.; Laxminarayana, K.; Ravikanth, B.; Rao, B. R. J. Mol. Catal. A: Chem.
2007, 261, 180; (b) Nagawade, R. R.; Shinde, D. B. Mendeleev Commun. 2007, 17,
299.
and economic availability of the catalyst make the eco-friendly
procedure an attractive alternative to the existing methods for
the synthesis of amidoalkyl naphthols. Further applications of
P2O5 and o-QM intermediate on the extension of this protocol
are ongoing in our group.
11. Nagarapu, L.; Baseeruddin, M.; Apuri, S.; Kantevari, S. Catal. Commun. 2007, 8,
1729.
Acknowledgement
12. Khodaei, M. M.; Khosropour, A. R.; Moghanian, H. Synlett 2006, 916.
13. Patil, S. B.; Singh, P. R.; Surpur, M. P.; Samant, S. D. Ultrason. Sonochem. 2007, 14,
515.
14. (a) Shaterion, H. R.; Yarahmadi, H.; Ghashang, M. Tetrahedron 2008, 64, 1263;
(b) Mahdavinia, G. H.; Bigdeli, M. A.; Heravi, M. M. Chin. Chem. Lett. 2008, 19,
1171.
15. Dorehgiraee, A.; Khabazzadeh, H.; Saidi, K. Arkivoc 2009, 303.
16. Srihari, G.; Nagaraju, M.; Murthy, M. M. Helv. Chim. Acta 2007, 90, 1497.
17. Patil, S. B.; Singh, P. R.; Surpur, M. P.; Samant, S. D. Synth. Commun. 2007, 37,
1659.
18. (a) Shaterian, H. R.; Amirzadeh, A.; Khorami, F.; Ghashang, M. Synth. Commun.
2008, 38, 2983; (b) Shaterian, H. R.; Yarahmadi, H.; Ghashang, M. Bioorg. Med.
Chem. Lett. 2008, 18, 788; (c) Kumar, A.; Rao, M. S.; Ahmad, I.; Khungar, B. Can. J.
Chem. 2009, 87, 714; (d) Mahdavinia, G. H.; Bigdeli, M. A. Chin. Chem. Lett. 2009,
20, 383; (e) Zhang, P.; Zhan-Hui Zhang, Z.-H. Monatsh. Chem. 2009, 140, 199; (f)
An, L.-T.; Lu, X.-H.; Ding, X.-Q.; Jiang, W.-Q.; Zou, J.-P. Chin. J. Chem. 2008, 26,
2117; (g) Shaterian, H. R.; Yarahmadi, H. Tetrahedron Lett. 2008, 49, 1297.
19. Hajipour, A. R.; Ghayeb, Y.; Sheikhan, N.; Ruoho, A. E. Tetrahedron Lett. 2009, 50,
5649.
20. Ren, R. X.; Zueva, L. D.; Ou, W. Tetrahedron Lett. 2001, 42, 8441.
21. Hamamatsu, T.; Kimura, N.; Takashima, T.; Morikita, T. Patent USPTO Appln.
No. 20090099400—Class: 585529.
22. Eshghi, H.; Shafieyoon, P. Phosphorous, Sulfur Silicon Relat. Elem. 2004, 179,
2149.
23. Eshghi, H.; Gordi, Z. Phosphorous, Sulfur Silicon Relat. Elem. 2004, 179, 1341.
24. Nandi, G. C.; Samai, S.; Kumar, R.; Singh, M. S. Tetrahedron 2009, 34, 7129.
25. Van De Water, R. W.; Pettus, T. R. R. Tetrahedron 2002, 58, 5367.
26. General procedure for the synthesis of amidoalkylnaphthol: To a nicely ground
mixture of 2-naphthol (1.0 mmol), aldehyde (1.0 mmol) and amide (1.2 mmol),
the catalyst P2O5 (10 mol %) was added and the reaction mixture was heated at
60 °C for the stipulated period of time. Completion of the reaction was checked
by TLC. Hot water was added to the reaction mixture to remove the unreacted
amide and catalyst. The crude product obtained was crystallized from ethanol
to give the pure compound.
S.S. and G.C.N. are thankful to the Council of Scientific and
Industrial Research (CSIR), New Delhi for senior research
fellowship.
References and notes
1. (a) Ugi, I. Pure Appl. Chem. 2001, 73, 187. and references cited therein; (b) Devi, I.;
Bhuyan, P. J. Tetrahedron Lett. 2004, 45, 8625; (c)For a monograph, see: Zhu, J.,
Bienayme, H., Eds.Multicomponent Reactions; Wiley-VCH,: Weinheim,
Germany, 2005; (d) Domling, A. Chem. Rev. 2006, 106, 17–89; (e) D’Souza, D.
M.; Mueller, T. J. J. Chem. Soc. Rev. 2007, 36, 3169; (f) Cariou, C. C. A.; Clarkson, G. J.;
Shipman, M. J. Org. Chem. 2008, 73, 9762; (g) Alizadeh, A.; Mobahedi, F.; Esmaili,
A. Tetrahedron Lett. 2006, 47, 4469; (h) Umkeherer, M.; Kalinski, C.; Kolb, J.;
Burdack, C. Tetrahedron Lett. 2006, 47, 2391; (i) Domling, A.; Ugi, I. Angew. Chem.,
Int. Ed. 2000, 39, 3168; (j) Ramon, D. J.; Yus, M. Angew. Chem., Int. Ed. 2005, 44,
1602; (k) Tejedor, D.; Garcia-Tellado, F. Chem. Soc. Rev. 2007, 36, 484.
2. (a) Armstrong, R. W.; Combs, A. P.; Tempest, P. A.; Brown, S. D.; Keating, T. A.
Acc. Chem. Res. 1996, 29, 123; (b) Tietze, L. F. Chem. Rev. 1996, 96, 115; (c)
Weber, L.; Illegen, K.; Almstetter, M. Synlett 1999, 366.
3. (a) Weber, L. Drug Discovery Today 2002, 7, 143; (b) Hulme, C.; Gore, V. Curr.
Med. Chem. 2003, 10, 51; (c) Tempest, P. A. Curr. Opin. Drug Discovery Dev. 2005,
8, 776; (d) Kalinski, C.; Lemoine, H.; Schmidt, J.; Burdack, C.; Kolb, J.; Umkehrer,
M.; Ross, G. Synlett 2008, 4007.
4. For reviews see: (a) Trost, B. M. Science 1991, 254, 1471; (b) Sheldon, R. A. Pure
Appl. Chem. 2000, 72, 1233.
5. (a) Seebach, D.; Matthews, J. L. J. Chem. Soc., Chem. Commun. 1997, 2015; (b)
Wang, Y.-F.; Izawa, T.; Kobayashi, S.; Ohno, M. J. Am. Chem. Soc. 1982, 104,
6465; (c) Knapp, S. Chem. Rev. 1995, 95, 1859; (d) Juaristi, E. In Enantioselective
Synthesis of b-Aminoacids; John Wiley & Sons: New York, 1997.
6. (a) Dingermann, T.; Steinhilber, D.; Folkers, G. In Molecular Biology in Medicinal
Chemistry; Wiley-VCH, 2004; (b) Shen, A. Y.; Tsai, C. T.; Chen, C. L. Eur. J. Med.
Chem. 1999, 34, 877;(c) Shen, A. Y.; Chen, C. L.; Lin, C. I. Chin. J. Physiol. 1992, 35, 45.