P. Parnicka et al. / Journal of Catalysis 353 (2017) 211–222
221
[13] L.Z. Pei, H.D. Liu, N. Lin, H.Y. Yu, Hydrothermal synthesis of cerium titanate
nanorods and its application in visible light photocatalysis, Mater. Res. Bull. 61
[14] Y. Zheng, W. Wang, Electrospun nanofibers of Er3+-doped TiO2 with
photocatalytic activity beyond the absorption edge, J. Solid State Chem. 210
[15] P. Sathishkumar, R.V. Mangalaraja, O. Rozas, H.D. Mansilla, M.A. Gracia-Pinilla,
S. Anandan, Low frequency ultrasound (42 kHz) assisted degradation of Acid
Blue 113 in the presence of visible light driven rare earth nanoclusters loaded
TiO2 nanophotocatalysts, Ultrason. Sonochem. 21 (2014) 1675–1681, http://
[16] H. Shi, T. Zhang, T. An, B. Li, X. Wang, Enhancement of photocatalytic activity of
nano-scale TiO2 particles co-doped by rare earth elements and
heteropolyacids, J. Colloid Interface Sci. 380 (2012) 121–127, http://dx.doi.
[17] V. Štengl, S. Bakardjieva, N. Murafa, Preparation and photocatalytic activity of
rare earth doped TiO2 nanoparticles, Mater. Chem. Phys. 114 (2009) 217–226,
photocatalyst. XPS and PL analysis revealed that neodymium was
present in the form of a complex with oxygen, Nd3+ clusters and
oxides on the TiO2 surface. The prepared samples can achieve pho-
tocatalytic degradation of phenol under visible light (k > 420 nm),
and Nd-TiO2 has better activity than those of pristine TiO2 and
P25. Action spectra analysis showed that Nd-modified TiO2 could
be excited under visible light in the range of 400–480 nm. Based
on the luminescence and action spectra, it can be concluded that
the conversion process of the visible to ultraviolet irradiation does
not have a significant effect on the photocatalytic activity of the
photocatalysts obtained. The up-conversion process is likely not
responsible for the degradation of phenol under Vis irradiation.
The enhanced activity is related to increase in the adsorption sites,
BET surface area, decrease of the crystallite size and prevention of
electron–hole recombination.
[18] A. Bokare, M. Pai, A.A. Athawale, Surface modified Nd doped TiO2 nanoparticles
as photocatalysts in UV and solar light irradiation, Sol. Energy 91 (2013) 111–
[19] V. Gomez, A.M. Balu, J.C. Serrano-Ruiz, S. Irusta, D.D. Dionysiou, R. Luque, J.
Acknowledgments
Santamaría,
Microwave-assisted
mild-temperature
preparation
of
neodymium-doped titania for the improved photodegradation of water
This research was financially supported by Polish National
Science Centre (Grant No. NCN 2015/17/D/ST5/01331) and sup-
ported by the Foundation for Polish Science (FNP).
[20] Y. Xie, C. Yuan, Photocatalysis of neodymium ion modified TiO2 sol under
[21] J. Wang, Y. Xie, Z. Zhang, J. Li, X. Chen, L. Zhang, R. Xu, X. Zhang, Photocatalytic
degradation of organic dyes with Er3+:YAlO3/ZnO composite under solar light,
[22] J. Castañeda-Contreras, V.F. Marañón-Ruiz, R. Chiu-Zárate, H. Pérez-Ladrón De
Guevara, R. Rodriguez, C. Michel-Uribe, Photocatalytic activity of erbium-
doped TiO2 nanoparticles immobilized in macro-porous silica films, Mater.
Appendix A. Supplementary material
Supplementary data associated with this article can be found, in
Res.
Bull.
47
(2012)
290–295,
References
[23] P. Yan, H. Jiang, S. Zang, J. Li, Q. Wang, Q. Wang, Sol-solvothermal preparation
and characterization of (Yb, N)-codoped anatase-TiO2 nano-photocatalyst with
high visible light activity, Mater. Chem. Phys. 139 (2013) 1014–1022, http://
[24] M. Yuan, J. Zhang, S. Yan, G. Luo, Q. Xu, X. Wang, C. Li, Effect of Nd2O3 addition
on the surface phase of TiO2 and photocatalytic activity studied by UV Raman
[25] L. Jing, B. Xin, F. Yuan, L. Xue, B. Wang, H. Fu, Effects of surface oxygen
vacancies on photophysical and photochemical processes of Zn-doped TiO2
nanoparticles and their relationships, J. Phys. Chem. B 110 (2006) 17860–
[26] J.-W. Shi, J.-T. Zheng, P. Wu, Preparation, characterization and photocatalytic
activities of holmium-doped titanium dioxide nanoparticles, J. Hazard. Mater.
[27] J. Liqiang, S. Xiaojun, X. Baifu, W. Baiqi, C. Weimin, F. Honggang, The
preparation and characterization of la doped TiO2 nanoparticles and their
photocatalytic activity, J. Solid State Chem. 177 (2004) 3375–3382, http://dx.
[1] P.T. Anastas, M.M. Kirchhoff, Origins, current status, and future challenges of
[2] O. Carp, C.L. Huisman, A. Reller, Photoinduced reactivity of titanium dioxide,
[3] A. Zaleska, Doped-TiO2: a review, Recent Patents Eng. 2 (2008) 157–164,
[4] J. Reszczyn´ ska, T. Grzyb, Z. Wei, M. Klein, E. Kowalska, B. Ohtani, A. Zaleska-
Medynska, Photocatalytic activity and luminescence properties of RE3+-TiO2
nanocrystals prepared by sol-gel and hydrothermal methods, Appl. Catal. B
[5] Y. Chen, D. Chen, J. Chen, Q. Lu, M. Zhang, B. Liu, Q. Wang, Z. Wang, Facile
synthesis of Bi nanoparticle modified TiO2 with enhanced visible light
photocatalytic activity, J. Alloys Compd. 651 (2015) 114–120, http://dx.doi.
[6] E. Bilgin, Simsek, Solvothermal synthesized boron doped TiO2 catalysts:
photocatalytic degradation of endocrine disrupting compounds and
pharmaceuticals under visible light irradiation, Appl. Catal. B Environ. 200
[7] R. Miao, Z. Luo, W. Zhong, S.Y. Chen, T. Jiang, B. Dutta, Y. Nasr, Y. Zhang, S.L.
[28] J. Reszczyn´ ska, T. Grzyb, J.W. Sobczak, W. Lisowski, M. Gazda, B. Ohtani, A.
Zaleska, Lanthanide co-doped TiO2: the effect of metal type and amount on
surface properties and photocatalytic activity, Appl. Surf. Sci. 307 (2014) 333–
Suib, Mesoporous TiO2 modified with carbon quantum dots as
performance visible light photocatalyst, Appl. Catal. B Environ. 189 (2016)
a high-
´
[29] J. Reszczynska, T. Grzyb, J.W. Sobczak, W. Lisowski, M. Gazda, B. Ohtani, A.
Zaleska, Visible light activity of rare earth metal doped (Er3+, Yb3+ or Er3+/Yb3+
)
titania photocatalysts, Appl. Catal. B Environ. 163 (2015) 40–49, http://dx.doi.
[8] E. Kowalska, Z. Wei, B. Karabiyik, A. Herissan, M. Janczarek, M. Endo, A.
Markowska-Szczupak, H. Remita, B. Ohtani, Silver-modified titania with
enhanced photocatalytic and antimicrobial properties under UV and visible
[9] E. Kowalska, M. Janczarek, L. Rosa, S. Juodkazis, B. Ohtani, Mono- and bi-
metallic plasmonic photocatalysts for degradation of organic compounds
under UV and visible light irradiation, Catal. Today 230 (2014) 131–137, http://
[10] M. Klein, J. Nadolna, A. Gołabiewska, P. Mazierski, T. Klimczuk, H. Remita, A.
Zaleska-Medynska, The effect of metal cluster deposition route on structure
and photocatalytic activity of mono- and bimetallic nanoparticles supported
on TiO2 by radiolytic method, Appl. Surf. Sci. 378 (2016) 37–48, http://dx.doi.
[11] J. Reszczynska, D.A. Esteban, M. Gazda, A. Zaleska, Pr-doped TiO2. The effect of
metal content on photocatalytic activity, Physicochem. Probl. Miner. Process
[30] A. Kasim, Absorption and upconversion of (Nd3+, Er3+) doped tellurite glass,
[31] C. Koepke, K. Wisniewski, L. Sikorski, D. Piatkowski, K. Kowalska, M. Naftaly,
Upconverted luminescence under 800 nm laser diode excitation in Nd3+
-
activated fluoroaluminate glass, Opt. Mater. (Amst) 28 (2006) 129–136, http://
[32] Q. Xiao, Z. Si, Z. Yu, G. Qiu, Sol-gel auto-combustion synthesis of samarium-
doped TiO2 nanoparticles and their photocatalytic activity under visible light
irradiation, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol 137 (2007) 189–
[33] J. Du, H. Chen, H. Yang, R. Sang, Y. Qian, Y. Li, G. Zhu, Y. Mao, W. He, D.J. Kang, A
facile sol-gel method for synthesis of porous Nd-doped TiO2 monolith with
enhanced photocatalytic activity under UV-Vis irradiation, Microporous
[12] P. Mazierski, W. Lisowski, T. Grzyb, M.J. Winiarski, T. Klimczuk, A. Mikołajczyk,
J. Flisikowski, A. Hirsch, A. Kołakowska, T. Puzyn, A. Zaleska-Medynska, J.
Nadolna, Enhanced photocatalytic properties of lanthanide-TiO2 nanotubes:
an experimental and theoretical study, Appl. Catal. B Environ. 205 (2017) 376–
[34] J. Thomas, S. Radhika, M. Yoon, Nd3+-doped TiO2 nanoparticles incorporated
with heteropoly phosphotungstic acid:
degradation of 4-chlorophenol in water, J. Mol. Catal. A Chem. 411 (2015)
a novel solar photocatalyst for