3578
S. Pu et al. / Tetrahedron Letters 51 (2010) 3575–3579
Tanifuji, N.; Matsuda, K.; Irie, M. Polyhedron 2005, 24, 2484–2490; (e) Kawai, T.;
2500
2000
1500
1000
500
Nakashima, Y.; Irie, M. Adv. Mater. 2005, 17, 309–314.
3. (a) Kim, E.; Choi, Y. K.; Lee, M. H. Macromolecules 1999, 32, 4855–4860; (b)
Morimitsu, K.; Kobatake, S.; Irie, M. Tetrahedron Lett. 2004, 45, 1155–1158; (c)
Kim, M. S.; Maruyama, H.; Kawai, T. S.; Irie, M. Chem. Mater. 2003, 15, 4539–
4543; (d) Bertarelli, C.; Bianco, A.; Amore, F. D.; Gallazzi, M. C.; Zerbi, G. Adv.
Funct. Mater. 2004, 14, 357–363; (e) Kawai, T.; Kim, M. S.; Sasaki, T.; Irie, M. Opt.
Mater. 2002, 21, 275–278; (f) Moriyama, Y.; Matsuda, K.; Tanifuji, N.; Irie, S.;
Irie, M. Org. Lett. 2005, 7, 3315–3318; (g) Kawai, T.; Kunitake, T.; Irie, M. Chem.
Lett. 1999, 28, 905–906.
4. (a) Irie, M.; Sakemura, K.; Okinaka, M.; Uchida, K. J. Org. Chem. 1995, 60, 8305–
8309; (b) Matsuda, K.; Matsuo, M.; Mizoguti, S.; Higashiguchi, K.; Irie, M. J.
Phys. Chem. B 2002, 106, 11218–11225; (c) Takayama, K.; Matsuda, K.; Irie, M.
Chem. Eur. J. 2003, 9, 5605–5609.
Vis
UV
5. Luo, Q. F.; Li, X. C.; Jing, S. P.; Zhu, W. H.; Tian, H. Chem. Lett. 2003, 32, 1116–
1117.
0
6. (a) Nakamura, S.; Irie, M. J. Org. Chem. 1988, 53, 6136–6138; (b) Uchida, K.;
Ishikawa, T.; Takeshita, M.; Irie, M. Tetrahedron 1998, 54, 6627–6638.
7. (a) Irie, M.; Mohri, M. J. Org. Chem. 1988, 53, 803–808; (b) Uchida, K.;
Nakayama, Y.; Irie, M. Bull. Chem. Soc. Jpn. 1990, 63, 1311–1315; (c) Nakayama,
Y.; Hayashi, K.; Irie, M. J. Org. Chem. 1990, 55, 2592–2596; (d) Hanazawa, M.;
Sumiya, R.; Horikawa, Y.; Irie, M. J. Chem. Soc., Chem. Commun. 1992, 206–207;
(e) Nakayama, Y.; Hayashi, K.; Irie, M. Bull. Chem. Soc. Jpn. 1991, 64, 789–795.
8. Deng, X. H.; Liebeskind, L. S. J. Am. Chem. Soc. 2001, 123, 7703–7704.
9. Yamaguchi, T.; Irie, M. Tetrahedron Lett. 2006, 47, 1267–1269.
10. Yagi, K.; Soong, C. F.; Irie, M. J. Org. Chem. 2001, 66, 5419–5423.
11. Yamaguchi, T.; Irie, M. J. Org. Chem. 2005, 70, 10323–10328.
12. (a) Pu, S. Z.; Liu, G.; Shen, L.; Xu, J. K. Org. Lett. 2007, 9, 2139–2142; (b) Uchida,
K.; Matsuoka, T.; Sayo, K.; Iwamoto, M.; Hayashi, S.; Irie, M. Chem. Lett. 1999,
28, 835–836; (c) Favaro, G.; Mazzucato, U.; Ortica, F.; Smimmo, P. Inorg. Chim.
Acta 2007, 360, 995–999.
450
500
550
600
Wavelength/nm
Figure 4. Change in the intensity of the fluorescence spectra of diarylethene 1 in
hexane (2.0 Â 10À5 mol LÀ1) upon photoirradiation.
sity of diarylethene 1 was quenched to ca. 20% in hexane and ca.
27% in PMMA film. Similarly, diarylethenes 2–4 also functioned
as a good fluorescent switch upon photoirradiation both in hexane
and in PMMA films. In the photostationary state, their emission
intensities were quenched to ca. 36% for 2, 37% for 3, and 39% for
4 in hexane and ca. 51% for 2, 47% for 3, and 58% for 4 in PMMA
films. The result showed that the fluorescent modulation efficien-
cies of diarylethenes 1–4 in hexane were much higher than those
in PMMA film. The result is also contrary to that reported for diary-
lethenes bearing both thiophene and benzene moieties, where the
fluorescent modulation efficiencies in hexane were much lower
than those in PMMA film.21 The incomplete cyclization reaction
and the existence of parallel conformations with relatively strong
fluorescence may be the main cause for the lower fluorescent con-
version.26 Among diarylethenes 1–4, diarylethene 1 showed the
highest fluorescent modulation efficiency both in solution and in
PMMA film, suggesting that it is the most promising candidate
for application on photoswitchable devices such as optical memory
and fluorescent modulation switches.27
In conclusion, four new unsymmetrical photochromic diary-
lethenes with both thiazole and benzene moieties have been syn-
thesized and their properties have been investigated. This new
photochromic system showed good photochromism and acted as
a remarkable fluorescent switch both in solution and in PMMA
film. The results indicated that the substituents at 2-position of
the benzene ring had a significant effect on the properties of these
diarylethene derivatives. Diarylethenes based on thiazole and ben-
zene moieties induced some new characteristics differing from
other reported diarylethenes. The results will be helpful for the
synthesis of efficient photoactive diarylethene derivatives with
new molecular skeletons and to design new photochromic systems
for further potential applications.
13. Pu, S. Z.; Yang, T. S.; Xu, J. K.; Chen, B. Tetrahedron Lett. 2006, 47, 6473–6477.
14. (a) Takami, S.; Irie, M. Tetrahedron 2004, 60, 6155–6161; (b) Takami, S.; Kawai,
T.; Irie, M. Eur. J. Org. Chem. 2002, 3796–3800.
15. (a) Nakagawa, T.; Hasegawa, Y.; Kawai, T. J. Phys. Chem. A 2008, 112, 5096–
5103; (b) Nakagawa, H.; Kawai, S.; Nakashima, T.; Kawai, T. Org. Lett. 2009, 11,
1475–1478.
16. Iwata, S.; Ishihara, Y.; Qian, C.; Tanaka, K. J. Org. Chem. 1992, 57, 3726–3730.
17. Data for 1o: Mp 55–56 °C; Calcd for C17H13F6NOS (%): Calcd C, 51.91; H, 3.33;
N, 3.56. Found C, 51.89; H, 3.37; N, 3.51; 1H NMR (400 MHz, CDCl3, ppm): d
1.90 (s, 3H, –CH3), 2.67 (s, 3H, –CH3), 3.60 (s, 3H, –OCH3), 6.88(d, 1H, J = 8.0 Hz,
benzene-H), 7.03 (t, 1H, J = 6.0 Hz, benzene-H), 7.34 (d, 1H, J = 8.0 Hz, benzene-
H), 87.40(t, 1H, J = 8.0 Hz, benzene-H); 13C NMR(100 MHz, CDCl3, ppm): d
16.12, 19.04, 55.24, 111.48, 116.88, 117.16, 120.96, 129.90, 132.07, 153.36,
157.02, 167.63; IR(KBr, m
, cmÀ1): 707, 760, 790, 831, 864, 985, 1023, 1047,
1073, 1126, 1190, 1271, 1338, 1400, 1438, 1463, 1532, 1630. Data for 2o: Calcd
for C17H13F6NS (%): Calcd C, 54.11; H, 3.47; N, 3.71. Found C, 54.17; H, 3.50; N,
3.68; 1H NMR (400 MHz, CDCl3, ppm): d 1.96 (s, 3H, –CH3), 1.99 (s, 3H, –CH3),
2.53 (s, 3H, –CH3), 7.13 (d, 1H, J = 8.0 Hz benzene-H), 7.20 (t, 2H, J = 6.0 Hz,
benzene-H), 7.25–7.29 (m, 1H, benzene-H); 13C NMR(100 MHz, CDCl3, ppm): d
16.85, 19.03, 19.55, 116.40, 126.31, 127.02, 129.17, 130.16, 130.95, 136.92,
154.44, 168.42; IR (KBr, m
, cmÀ1): 586, 744, 833, 866, 989, 1072, 1132, 1193,
1276, 1342, 1400, 1456, 1627. Data for 3o: 77–78 °C; Calcd for C17H10F6N2S
(%): Calcd C, 52.58; H, 2.60; N, 7.21. Found: C, 52.63; H, 2.57; N, 7.19; 1H NMR
(400 MHz, CDCl3, ppm): d 1.97 (s, 3H, –CH3), 2.67 (s, 3H, –CH3), 7.62–7.66 (m,
2H, benzene-H), 7.73 (d, 1H, J = 8.0 Hz, benzene-H), 7.77 (t, 1H, J = 8.0 Hz,
benzene-H); 13C NMR (100 MHz, CDCl3, TMS): d 16.75, 19.17, 113.23, 115.64,
116.08, 129.93, 130.75, 131.28, 133.30, 134.01, 154.85, 169.74; IR (KBr,
m,
cmÀ1): 767, 834, 867, 949, 990, 1036, 1073, 1137, 1199, 1282, 1341, 1399,
1445, 1524, 1624, 1628, 1986, 2232, 2931, 2968, 3197. Data for 4o: Calcd for
C17H10F9NS (%): Calcd C, 47.34; H, 2.34; N, 3.25. Found: C, 47.39; H, 2.38; N,
3.60; 1H NMR (400 MHz, CDCl3, ppm): d 2.23 (s, 3H, –CH3), 2.60 (s, 3H, –CH3),
7.42 (d, 1H, J = 8.0 Hz, benzene-H), 7.64–7.70 (m, 2H, benzene-H), 7.76 (d, 1H,
J = 8.0 Hz, benzene-H); 13C NMR (100 MHz, CDCl3): d 16.90, 19.21, 115.64,
121.77, 125.20, 127.59, 127.63, 130.63, 131.25, 131.98; IR (KBr, m
, cmÀ1): 727,
771, 800, 834, 865, 950, 991, 1036, 1076, 1139, 1398, 1276, 1315, 1342, 1398,
1446, 1529, 1627, 1629, 2932. Data for 1c: 1H NMR (400 MHz, CDCl3, ppm): d
1.66 (s, 3H, –CH3), 2.35 (s, 3H, –CH3), 3.35 (s, 3H, –OCH3), 5.92 (d, 1H, J = 8.0 Hz,
benzene-H), 6.09 (t, 1H, J = 8.0 Hz, benzene-H), 6.41 (t, 1H, benzene-H), 6.52 (d,
1H, J = 8.0 Hz, benzene-H). Data for 2c: 1H NMR (400 MHz, CDCl3, ppm): d 1.25
(s, 3H, –CH3), 1.57 (s, 3H, –CH3), 2.34 (s, 3H, –CH3), 6.15 (d, 1H, J = 8.0 Hz,
benzene-H), 6.28 (t, 2H, J = 8.0 Hz, benzene-H), 6.32 (t, 1H, J = 8.0 Hz, benzene-
H). Data for 3c: 1H NMR (400 MHz, CDCl3, ppm): d 1.50 (s, 3H, –CH3), 2.45 (s,
3H, –CH3), 6.20–6.28 (m, 2H, benzene-H), 6.54 (d, 1H, benzene-H), 6.58 (t, 1H,
J = 8.0 Hz, benzene-H). Data for 4c: 1H NMR (400 MHz, CDCl3, ppm): d 1.69 (s,
3H, –CH3), 1.92 (s, 3H, –CH3), 6.07 (d, 1H, J = 8.0 Hz, benzene-H), 6.20–6.24 (m,
2H, benzene-H), 6.51 (d, 1H, benzene-H).
Acknowledgments
This work was supported by Program for the NSFC of China
(20962008), New Century Excellent Talents in University (NCET-
08-0702), Project of Jiangxi Youth Scientist, the Key Scientific Pro-
ject from Education Ministry of China (208069), National Natural
Science Foundation of Jiangxi Province (2008GZH0020), and Grad-
uated Research and Innovation Fund of Jiangxi Province.
18. Li, Z. X.; Liao, L. Y.; Sun, W.; Xu, C. H.; Zhang, C.; Fang, C. J.; Yan, C. H. J. Phys.
Chem. C 2008, 112, 5190–5196.
19. Kasatani, K.; Kambe, S.; Irie, M. J. Photochem. Photobiol., A: Chem. 1999, 122, 11–
15.
References and notes
20. Uchida, K.; Matsuoka, T.; Kobatake, S.; Yamaguchi, T.; Irie, M. Tetrahedron 2001,
57, 4559–4565.
21. Pu, S. Z.; Fan, C. B.; Miao, W. J.; Liu, G. Tetrahedron 2008, 64, 9464–9470.
22. Giraud, M.; Léaustic, A.; Guillot, R.; Yu, P.; Maurel, F.; Nakatani, K. Tetrahedron
Lett. 2009, 50, 1485–1489.
1. Brown, G. H. Photochromism; Wiley: New York, 1971; (b) Dürr, H.; Bouas-
Laurent, H. Photochromism, Molecules and Systems; Elsevier: Amsterdam, 1990.
2. (a) Irie, M. Chem. Rev. 2000, 100, 1685–1716; (b) Tian, H.; Yang, S. J. Chem. Soc.
Rev. 2004, 33, 85–97; (c) Tian, H.; Wang, S. Chem. Commun. 2007, 781–792; (d)