Synthesis of Biaryl-Containing Medium Rings
A R T I C L E S
Scheme 1
century, for example, in the Ullmann reaction.13 Whitesides,14
Kauffmann,15 van Koten,16 Ziegler,17 Bertz,18 and others19 have
used oxidants on aryl cuprates to give biaryls. More recently,
Lipshutz and co-workers have expanded this work considerably
in two ways: first, by using “kinetic” cuprates to cross-couple
aryl units intermolecularly, generating unsymmetrical biaryls;20
and second, by using a chiral tether to synthesize biaryls
intramolecularly and atropdiastereoselectively.21 The Lipshutz
method was successfully extended to 3a, a substrate bearing a
new and readily accessible chiral tether (Scheme 1).22 Acyclic
substrates, such as 3a, were synthesized readily in three steps:
(a) amino alcohols were treated with an ortho-halobenzaldehyde,
and the resultant imine was reduced with NaBH4 to give 1a,23
(b) Eschweiler-Clarke N-methylation24 or reductive alkylation
using a borane-pyridine complex25 yielded 2a, and finally (c)
3a was generated by O-alkylation with an ortho-halobenzyl
halide via the sodium alkoxide.26 Using the Lipshutz method,
treatment of the cyclization precursor 3a with tert-butyllithium,
then with CuCN, and last with 3O2, gave a 58% yield of biaryl
Figure 1. Both vancomycin and pterocaryanin C have axially disymmetric
biaryl units contained within 12- and 10-membered rings, respectively
(highlighted in red).
account of the format that will be required for the screen. When
a diverse range of screens is desired, then a flexible and
preferably automated approach will be essential. We have
developed a procedure for synthesizing and arraying small
molecules individually as stock solutions in quantities sufficient
to permit hundreds of phenotypic and proteomic assays to be
performed per compound - the one bead/one stock solution
technology platform.7 The research described herein makes use
of that platform.
We report the development, scope, and mechanism of general,
efficient, and atropdiastereoselective reactions leading to com-
pounds having biaryl-containing medium rings.8 The reactions
were studied in solution and on a high capacity polymeric
support, and the structural and conformational properties of the
medium ring products were determined. Details of the strategies
adopted in the library’s design and specification, and its
subsequent apportioning, which led to our being able to perform
a range of biological assays on each of the resulting compounds,
are also included.
(13) (a) Ullmann, F.; Bielecki, J. Chem. Ber. 1901, 34, 2174-2185. (b) Fanta,
P. E. Synthesis 1974, 9-21.
(14) (a) Whitesides, G. M.; San Filippo, J.; Casey, C. P.; Panek, E. J. J. Am.
Chem. Soc. 1967, 89, 5302-5303. (b) Whitesides, G. M.; Fischer, W. F.;
San Filippo, J.; Bashe, R. W.; House, H. O. J. Am. Chem. Soc. 1969, 91,
4871-4882. (c) Whitesides, G. M.; Stedronsky, E. R.; Casey, C. P.; San
Filippo, J. J. Am. Chem. Soc. 1970, 92, 1426-1427.
(15) Kauffmann, T. Angew. Chem., Int. Ed. Engl. 1974, 13, 291-305.
(16) (a) van Koten, G.; Jastrzebski, J. T. B. H.; Noltes, J. G. Chem. Commun.
1977, 203-204. (b) van Koten, G.; Jastrzebski, J. T. B. H.; Noltes, J. G.
J. Org. Chem. 1977, 42, 2047-2053. (c) Janssen, M. D.; Corsten, M. A.;
Spek, A. L.; Grove, D. M.; van Koten, G. Organometallics 1996, 15, 2810-
2820.
(17) Ziegler, F. E.; Chliwner, I.; Fowler, K. W.; Kanfer, S. J.; Kuo, S. J.; Sinha,
N. D. J. Am. Chem. Soc. 1980, 102, 790-798.
(18) Bertz, S. H.; Gibson, C. P. J. Am. Chem. Soc. 1986, 108, 8286-8288.
(19) Konduirov, N. V.; Fomin, D. A. J. Russ. Phys. Chem. Soc. 1915, 47, 190-
198 (CA 1915, 9, 1473).
(20) (a) Lipshutz, B. H.; Siegmann, K.; Garcia, E. J. Am. Chem. Soc. 1991,
113, 8161-8162. (b) Lipshutz, B. H.; Siegmann, K.; Garcia, E. Tetrahedron
1992, 48, 2579-2588. (c) Lipshutz, B. H.; Siegmann, K.; Garcia, E.;
Kayser, F. J. Am. Chem. Soc. 1993, 115, 9276-9282. (d) Lipshutz, B. H.;
Kayser, F.; Siegmann, K. Tetrahedron Lett. 1993, 34, 6693-6696.
(21) (a) Lipshutz, B. H.; Kayser, F.; Liu, Z.-P. Angew. Chem., Int. Ed. Engl.
1994, 33, 1842-1844. (b) Lipshutz, B. H.; Kayser, F.; Maullin, N.
Tetrahedron Lett. 1994, 35, 815-818. (c) Lipshutz, B. H.; Liu, Z.-P.;
Kayser, F. Tetrahedron Lett. 1994, 35, 5567-5570.
Results and Discussion
A library of small molecules related to pterocaryanin C was
envisaged to be synthesized via a differentially acylated or
alkylated 1,2-amino alcohol followed by intramolecular biaryl
formation, where the atropdiastereoselectivity of the biaryl
would be directed by the chiral amino alcohol. Unfortunately,
all attempts at the medium ring-forming reactions, using Stille,9
Suzuki and Miyaura,10 and other methodologies,11 were not
sufficiently promising for a split-pool synthesis, which requires
reactions to proceed in excellent yield and purity.12
Reaction Development. Biaryl synthesis by way of oxidation
of organocopper complexes has been recognized for about a
(7) (a) Blackwell, H. E.; Pe´rez, L.; Stavenger, R. A.; Tallarico, J. A.; Eatough,
E. C.; Foley, M. A.; Schreiber, S. L. Chem. Biol. 2001, 8, 1167-1182. (b)
Clemons, P. A.; Koehler, A. N.; Wagner, B. K.; Sprigings, T. G.; Spring,
D. R.; King, R. W.; Schreiber, S. L.; Foley, M. A. Chem. Biol. 2001, 8,
1182-1195.
(22) Use of the Lipshutz method: (a) Coleman, R. S.; Grant, E. B. Tetrahedron
Lett. 1993, 34, 2225-2228. (b) Coleman, R. S.; Grant, E. B. J. Am. Chem.
Soc. 1994, 116, 8795-8796. (c) Coleman, R. S.; Grant, E. B. J. Am. Chem.
Soc. 1995, 117, 10889-10904. (d) Sugimura, T.; Yamada, H.; Inoue, S.;
Tai, A. Tetrahedron: Asymmetry 1997, 8, 649-655. (e) Lin, G.-Q.; Zhong,
M. Tetrahedron: Asymmetry 1997, 8, 1369-1372. (f) Andrus, M. B.;
Asgari, D.; Sclafani, J. A. J. Org. Chem. 1997, 62, 9365-9368. (g)
Kyasnoor, R. V.; Sargent, M. V. Chem. Commun. 1998, 2713-2714. (h)
Carbonnelle, A.-C.; Zamora, E. G.; Beugelmans, R.; Roussi, G. Tetrahedron
Lett. 1998, 39, 4471-4472. (i) Kabir, S. M. H.; Iyoda, M. Chem. Commun.
2000, 2329-2330.
(8) Spring, D. R.; Krishnan, S.; Schreiber, S. L. J. Am. Chem. Soc. 2000, 122,
5656-5657.
(9) Stille, J. K. Angew. Chem., Int. Ed. Engl. 1986, 25, 508-524.
(10) (a) Miyaura, N.; Suzuki, A. Chem. ReV. 1995, 95, 2457-2483. (b)
Carbonnelle, A.-C.; Zhu, J. Org. Lett. 2000, 2, 3477-3480.
(11) Ni0 has been shown to be effective at medium ring formation; however,
cyclization of 3a (X ) I) under literature conditions furnished only 18%
of 4a [2:3 (P:M)] and 18% of dehalogenated 3a (i.e., X ) H). Similarly,
3m (X ) I) yielded only 26% of 4m [1:1 (P:M)] and 22% of dehalogenated
3m.
(12) For recent reviews of biaryl synthesis: (a) Bringmann, G.; Menche, D.
Acc. Chem. Res. 2001, 34, 615-624. (b) Lloyd-Williams, P.; Giralt, E.
Chem. Soc. ReV. 2001, 30, 145-157. (c) Bringmann, G.; Breuning, M.;
Tasler, S. Synthesis 1999, 525-558. (d) Stanforth, S. P. Tetrahedron 1998,
54, 263-303.
(23) Saavedra, J. E. J. Org. Chem. 1985, 50, 2271-2273.
(24) Wikening, R. R.; Ratcliffe, R. W.; Doss, G. A.; Mosley, R. T.; Ball, R. G.
Tetrahedron 1997, 53, 16923-16944.
(25) (a) Pelter, A.; Rosser, R. M.; Mills, S. J. Chem. Soc., Perkin Trans. 1 1984,
717-720. (b) Moormann, A. E. Synth. Commun. 1993, 23, 789-795. (c)
Bomann, M. D.; Guch, I. C.; DiMare, M. J. Org. Chem. 1995, 60, 5995-
5996.
(26) (a) Stoochnoff, B. A.; Benoiton, N. L. Tetrahedron Lett. 1973, 14, 21-24.
(b) Brown, C. A.; Barton, D.; Sivaram, S. Synthesis 1974, 434-436.
9
J. AM. CHEM. SOC. VOL. 124, NO. 7, 2002 1355