investigations. The current study provides a roadmap for
preparing new cages and guiding investigations of photo-
physical properties of nitrobenzyl derivatives.
This work was supported by the University of Connecticut.
The authors thank B. Wong and Prof. S. J. Lippard for the
generous donation of ZP1B.
Notes and references
1 G. Mayer and A. Heckel, Angew. Chem., Int. Ed., 2006, 45,
4900–4921.
2 S. R. Adams and R. Y. Tsien, Annu. Rev. Physiol., 1993, 55,
755–784.
Fig. 3 Fluorescence response of ZP1B upon uncaging of ZinCast-1.
The emission intensity of a solution of 5 mM ZP1B (50 mM HEPES,
100 mM KCl, 20% DMSO, pH 7) was recorded before and after the
addition of 40 mM ZnCl2. The emission was integrated between 480
and 620 nm and normalized to the maximum response. Subsequent
addition of 25 mM ZinCast-1 partially reduced the emission of the
ZP1B complex, which has a Kd of 13 mM for Zn2+. Irradiation of the
solution in an Applied Photophysics photoreactor (two 4 W lamps,
lex = 350 nm) resulted in a complete photolysis of ZinCast-1 within
50 minutes. This behavior is consistent with ZP1B acquiring Zn2+
from the photolyzed ZinCast-1. Inset: changes in normalized
integrated emission.
3 G. C. R. Ellis-Davies, Chem. Rev., 2008, 108, 1603–1613.
4 K. L. Ciesienski, K. L. Haas, M. G. Dickens, Y. T. Tesema and
K. J. Franz, J. Am. Chem. Soc., 2008, 130, 12246–12247.
5 D. H. M. Bandara, D. P. Kennedy, E. Akin, C. D. Incarvito and
S. C. Burdette, Inorg. Chem., 2009, 48, 8445–8555.
6 S. R. Adams, J. P. Y. Kao, G. Grynkiewicz, A. Minta and
R. Y. Tsien, J. Am. Chem. Soc., 1988, 110, 3212–3220.
7 D. P. Kennedy, C. Gwizdala and S. C. Burdette, Org. Lett., 2009,
11, 2587–2590.
8 P. Jiang and Z. Guo, Coord. Chem. Rev., 2004, 248, 205–229.
9 N. C. Lim, H. C. Freake and C. Bruckner, Chem.–Eur. J., 2005, 11,
38–49.
10 E. M. Nolan and S. J. Lippard, Acc. Chem. Res., 2009, 42,
193–203.
11 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr.,
T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam,
S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi,
G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada,
M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida,
T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li,
J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo,
J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev,
A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski,
P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador,
J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels,
M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck,
K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui,
A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu,
A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox,
T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara,
M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen,
M. W. Wong, C. Gonzalez and J. A. Pople, GAUSSIAN 03,
Gaussian, Inc., Wallingford, CT, 2004.
ZP1B occurs. While this method illustrates light-induced
changes in Zn2+ binding equilibria, the low intensity source
(two 4 W lamps) precludes photolysis at a rate relevant to
biological applications. Flash photolysis is the preferred
uncaging technique since it provides high intensity high-speed
light bursts that are capable of photolyzing cages efficiently.21
When ZinCast complexes with binding and photochemical
properties suitable for studying Zn2+ biology become available,
detailed flash photolysis studies will be conducted.
The induced changes in free Zn2+ concentrations upon
photolysis of [Zn(ZinCast-1)]2+ can be simulated using HySS.22
An equimolar mixture of ZinCast-1 and Zn2+ (50 mM each)
results in 21 mM of free Zn2+ at equilibrium, a concentration
above the activation (r1 mM) of many extracellular Zn2+
receptors; however by using a 10-fold excess of ZinCast-1 (50 mM)
to Zn2+ (5 mM), free Zn2+ concentrations can be maintained
at 1.3 mM. If flash photolysis converts 50% of the cage to
ZinUnc-1, equilibrium free Zn2+ would increase to 33 mM and
2.1 mM for each scenario, respectively. Although these
calculations do not account for endogenous Zn2+ or biologi-
cal chelators, the modeling indicates that if the Zn2+ affinity of
future ZinCast derivatives is increased, ZinCast complexes are
capable of modulating free Zn2+ under physiological conditions.
In conclusion, we have reported on two synthetic routes for
accessing ZinCast-1, a new caged complex for Zn2+. ZinCast-1
has a mM affinity for Zn2+ that decreases over 2 orders of
magnitude after photolysis. Future investigations will focus on
optimizing the quantum efficiency of uncaging, and tuning
the Zn2+ binding properties of cages for specific biological
12 M. A. Zolfigol, G. Chehardoli, S. Salehzadeh, H. Adams and
M. D. Ward, Tetrahedron Lett., 2007, 48, 7969–7973.
13 C. Qin, H. Wu, J. Cheng, X. a. Chen, M. Liu, W. Zhang, W. Su
and J. Ding, J. Org. Chem., 2007, 72, 4102–4107.
14 L. L. Stookey, Anal. Chem., 1970, 42, 779–781.
15 C. G. Bochet, Tetrahedron Lett., 2000, 41, 6341–6346.
16 E. Riguet and C. G. Bochet, Org. Lett., 2007, 9, 5453–5456.
17 X. J. Peng, J. J. Du, J. L. Fan, J. Y. Wang, Y. K. Wu, J. Z. Zhao,
S. G. Sun and T. Xu, J. Am. Chem. Soc., 2007, 129, 1500–1501.
18 F. Ugozzoli, C. Massera, A. M. M. Lanfredi, N. Marsich and
A. Camus, Inorg. Chim. Acta, 2002, 340, 97–104.
19 H. Irving and R. J. P. Williams, J. Chem. Soc., 1953, 3192–3210.
20 B. A. Wong, S. Friedle and S. J. Lippard, Inorg. Chem., 2009, 48,
7009–7011.
21 A. M. Gurney and H. A. Lester, Physiol. Rev., 1987, 67, 583–617.
22 L. Alderighi, P. Gans, A. Ienco, D. Peters, A. Sabatini and
A. Vacca, Coord. Chem. Rev., 1999, 184, 311–318.
ꢀc
This journal is The Royal Society of Chemistry 2009
Chem. Commun., 2009, 6967–6969 | 6969