368 Inorg. Chem. 2010, 49, 368–370
DOI: 10.1021/ic902052f
Contrasting Magnetism of [MnIII ] and [MnII MnIII ] Squares
4
2
2
Takuto Matsumoto,† Takuya Shiga,† Mao Noguchi,† Tatsuya Onuki,† Graham N. Newton,† Norihisa Hoshino,†
Motohiro Nakano,‡ and Hiroki Oshio*,†
†Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba 305-8571,
Japan and ‡Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1
Yamada-Oka, Suita, Osaka 565-0871, Japan
Received October 16, 2009
Two tetranuclear manganese distorted square-shaped clusters,
their potential application as molecular devices, such as
[MnIII (L1)4(μ2-OMe)4] 2.5H2O (1) and [MnII MnIII (L2)4(H2O)2]-
(PF6)2 CHCl3 CH3OH 1.5H2O (2) (H2L1 = 2-[3-(2-hydroxyphe-
quantum cellular automata.5 The controllable arrangement
of metal ions in multinuclear complexes is achieved through
rational ligand design and the bonding affinities of different
metal ions. Planar multidentate bridging ligands can afford n
ꢀ n square gridlike complexes, such as those reported by
Thompson, Lehn, and others.2 These grid complexes were
formed by spontaneous self-assembly due to the directing
geometries of the ligands. Hydrazone- and polypyridyl-type
ligands have been used by many researchers to construct
n ꢀ n grid complexes. However, most metal ions coordinated
in these complexes have octahedral coordination geometries
and the same oxidation states. Thus, heterometallic gridlike
complexes have been rarely reported.6 Against such a back-
ground, the development of asymmetric planar ligands is
important for the generation of novel grid-type complexes
because asymmetric ligands can stabilize heterometallic and
mixed-valence species. Recently, we reported the first grid-
type single-molecule magnet: a [Co9] complex supported by
symmetric polypyridine ligands.2c To develop our research
further, an asymmetric planar multidentate ligand derived
from 2,6-substituted pyridine was designed, and its com-
plexation behavior has been investigated. This paper des-
cribes the syntheses, crystal structures, and magnetic pro-
perties of two tetranuclear manganese gridlike complexes,
4
2
2
3
3
3
3
nyl)-1H-pyrazol-5-yl]-6-pyridinecarboxylic acid methyl ester; H2L2 =
2-[3-(2-hydroxyphenyl)-1H-pyrazol-5-yl]-6-pyridinecarboxylic acid
ethyl ester), exhibit antiferromagnetic and ferromagnetic inter-
actions between neighboring manganese ions, respectively.
Well-designed polynuclear complexes show various physi-
cal properties and functionalities because of the synergy of
the interactions between metal ions.1 Various complexes,
which have regular arrays such as grids,2 wires,3 and rings,4
have been prepared using a range of synthetic methods.
Tetranuclear complexes with square-shaped arrangements
of metal ions are of great interest to the chemist because of
*To whom correspondence should be addressed. E-mail: oshio@chem.
tsukuba.ac.jp.
(1) (a) Lehn, J.-M. Supramolecular Chemistry: Concepts and Perspectives;
VCH: Weinheim, Germany, 1995. (b) Leininger, S.; Olenyuk, B.; Stang, P. J.
Chem. Rev. 2000, 100, 853. (c) Fujita, M. Chem. Soc. Rev. 1998, 27, 417. (d)
Gatteschi, D.; Sessoli, R.; Villain, J. Molecular Nanomagnets; Oxford Press:
New York, 2006.
(2) (a) Thompson, L. K.; Waldmann, O.; Xu, Z. Coord. Chem. Rev. 2005,
249, 2677. (b) Ruben, M.; Rojo, J.; Romero-Salguero, F. J.; Uppadine, L. H.;
Lehn, J.-M. Angew. Chem., Int. Ed., 2004, 43, 3644 and references cited therein.
(c) Shiga, T.; Matsumoto, T.; Noguchi, M.; Onuki, T.; Hoshino, N.; Newton,
G. N.; Nakano, M.; Oshio, H. Chem. Asian J. 2009, 4, 1660.
[MnIII4(L1)4(μ2-OMe)4] 2.5H2O (1) and [MnII2MnIII2(L2)4-
3
(H2O)2](PF6)2 CHCl3 CH3OH 1.5H2O(2) [Figure 1; H2L1=
3
3
3
2-[3-(2-hydroxyphenyl)-1H-pyrazol-5-yl]-6-pyridinecar-
boxylic acid methyl ester; H2L2 = 2-[3-(2-hydroxyphenyl)-
1H-pyrazol-5-yl]-6-pyridinecarboxylic acid ethyl ester
(Scheme 1)].
(3) (a) Yin, C.; Huang, G.-C.; Kuo, C.-K.; Fu, M.-D.; Lu, H.-C; Ke,
J.-H.; Shih, K.-N.; Huang, Y.-L.; Lee, G.-H.; Yeh, C.-Y.; Chen,
C.-h.; Peng, S.-M. J. Am. Chem. Soc. 2008, 130, 10090. (b) Liu, I. P.-C.;
ꢀ
Benard, M.; Hasanov, H.; Chen, I.-W. P.; Tseng, W.-H.; Fu, M.-D.; Rohmer,
M.-M.; Chen, C.-h.; Lee, G.-H.; Peng, S.-M. Chem.;Eur. J. 2007, 13, 8667. (c)
Ismayilov, R. H.; Wang, W.-X.; Wang, R.-R.; Yeh, C.-Y.; Lee, G.-H.; Peng, S.-M.
Chem. Commun. 2007, 1121.
The asymmetric multidentate ligand H2L2 was synthesized
using the Claisen condensation reaction of 2-hydroxoaceto-
phenone with 2,6-pyridinecarboxylic acid ethyl ester.7 The
(4) (a) Affronte, M.; Carretta, S.; Timco, G. A.; Winpenny, R. E. P.
reaction of Mn(OAc)2 4H2O with H2L2 and Et3N in metha-
ꢀ
Chem. Commun. 2007, 1789. (b) Campos-Fernandez, C. S.; Schottel, B. L.;
3
nol yielded the tetranuclear MnIII4 complex 1, while the same
procedure, in the presence of a stoichiometric quantity of
bis(pentamethylcyclopentadienyl)iron as a reducing agent,
Chifotides, H. T.; Bera, J. K.; Bacsa, J.; Koomen, J. M.; Russell, D. H.; Dunbar,
K. R. J. Am. Chem. Soc. 2005, 127, 12909.
(5) (a) Zhao, Y.; Guo, D.; Liu, Y.; He, C.; Duan, C. Chem. Commun.
2008, 44, 5725. (b) Jiao, J.; Long, G. J.; Rebbouh, L.; Grandjean, F.; Betty, A. M.;
Fehlner, T. P. J. Am. Chem. Soc. 2005, 127, 17819. (c) Lent, C. S.; Isaksan, B.;
Lieberman, M. J. Am. Chem. Soc. 2003, 125, 1056. (d) Qi, H.; Sharma, S.; Li, Z.;
Snider, G. L.; Orlov, A. O.; Lent, C. S.; Fehlner, T. P. J. Am. Chem. Soc. 2003,
125, 15250. (e) Lent, C. S. Science 2000, 288, 1597. (f ) Imre, A.; Csaba, G.; Ji, L.;
Orlov, A. O.; Bernstein, G. H.; Porod, W. Science 2006, 311, 205.
(6) (a) Petitjean, A.; Kyritsakas, N.; Lehn, J.-M. Chem. Commun. 2004,
1168. (b) Parsons, S. R.; Thompson, L. K.; Dey, S. K.; Wilson, C.; Howard,
J. A. K. Inorg. Chem. 2006, 45, 8832.
r
pubs.acs.org/IC
Published on Web 12/14/2009
2009 American Chemical Society