Organic Amphiphile/a-Cyclodextrin Hydrogels
FULL PAPER
(2H; C6H3), 6.04 (s, 1H; C6H3), 7.94 (m, 2H; C5H5N), 8.42 (m, 1H;
C5H5N), 8.77 ppm (m, 2H; C5H5N) (peak of NCH2, OCH2, OCH3, H2–6
of a-CD overlapped with the signals of solvent and free a-CD); 13C{1H}
NMR (100 MHz, D2O, RT): d=28.9 (CH2), 29.4 (CH2), 32.1 (CH2), 32.3
(CH2), 32.7 (CH2), 33.9 (CH2), 58.1 (OCH3), 62.3 (C6-a-CD), 64.5
(NCH2), 71.3 (OCH2), 74.2 (C2-a-CD), 74.6 (C5-a-CD), 76.5 (C3-a-CD),
83.7 (C4-a-CD), 95.2 (C6H3), 96.2 (C6H3), 104.6 (C1-a-CD), 131.0
(C5H5N), 146.6 (C5H5N), 148.4 (C5H5N), 162.7 (C6H3), 163.9 ppm (C6H3)
1H NMR data of [1c·
in the a-CD face the C6H3-3,5-(OMe)2 moiety (500 MHz, D2O, RT): d=
ACHTUNGTREN(NUNG a-CD)]Br showed that the primary hydroxyl groups
3
3
6.06 (dd, J
ortho-C6H3); other signals of the isomers of [1c·
tinguished from each other due to severe overlap; d=1.51 (m, 2H;
A
ACHTUNGTREN(NUNG H,H)=2 Hz, 2H;
AHCTUNGTRENNUNG
3
OCH2CH2), 1.92 (m, 2H; NCH2CH2), 3.49 (dd, J
CD), 3.52 (dd, 3J(H,H)=9 Hz, 6H; H4-a-CD), 3.59 (dd, 3J
10 Hz, 6H; H5-a-CD), 3.64 (s, 6H; OCH3), 3.75 (dd, 3J
(H,H)=9, 9 Hz,
6H; H3-a-CD), 4.48 (t, 3J(H,H)=7 Hz, 2H; NCH2), 4.90 (d, 3J
(H,H)=
3 Hz, 6H; H1-a-CD), 7.89 (t, 3J(H,H)=7 Hz, 2H; C5H5N), 8.37 (t, 3J-
(H,H)=7 Hz, 1H; C5H5N), 8.70 ppm (d, 3J
(H,H)=6 Hz, 2H; C5H5N);
1H NMR data of [1c·
(a-CD)2]Br (500 MHz, D2O, RT): d=0.92–1.54
ACHTUNGTRENNUNG
A
ACHTUNGTRENNUNG
AHCTUNGTRENNUNG
1
1
(assignment was supported by H–1H COSY, H–13C COSY, and ROESY
A
ACHTUNGTRENNUNG
spectroscopy in D2O.); MS (MALDI-TOF): m/z calcd for C57H90NO33
:
AHCTUNGTRENNUNG
1316.5 [MÀCl]+; found 1315.1.
A
ACHTUNGTRENNUNG
AHCTUNGTRENNUNG
[2]- and [3]pseudorotaxanes of 1bCl and a-CD ([1b·ACTHNUGRTENUNG(a-CD)]Cl and [1b·-
ACHTUNGTRENNUNG
(a-CD)2]Cl): Compound 1bCl (28.6 mg, 7.01ꢁ10À2 mmol) and a-CD
(18H; CH2), 1.78–1.96 (2H; NCH2CH2), 4.48 (br, 2H; NCH2), 5.63 (s,
2H; ortho-C6H3), 6.17 (s, 1H; para-C6H3), 7.99 (br, 2H; C5H5N), 8.47 (br,
1H; C5H5N), 8.75 ppm (br, 2H; C5H5N); the signals of OCH2, OCH3,
(61.3 mg, 6.31ꢁ10À2 mmol) were dissolved in D2O (1.40 mL). Part of the
1
solution was transferred to an NMR tube and H and 13C{1H} NMR spec-
and a-CD of [1c·
ACHTUNGTRENNUNG
trum were recorded. The resulting mixture showed signals of 1bCl
free a-CD; 13C{1H} NMR data of [1c·
AHCTUNGTRENNUNG
(11.1 mm, 22%); [1b·
in the a-CD are close proximity to the C6H3-3,5-(OMe)2 moiety
(32.9 mm, 66%); and isomers of [1b·(a-CD)]Cl (5.1 mm, 10%) and [1b·
ACHTUNGTRENNUNG(a-CD)]Cl, in which the secondary hydroxyl groups
d=28.4 (CH2), 29.4 (CH2), 31.7 (2CH2), 32.2 (CH2), 33.3 (CH2), 33.4
(CH2), 33.6 (CH2), 33.7 (CH2), 34.1 (CH2), 58.4 (OCH3), 62.4 (C6-a-CD),
64.8 (NCH2), 70.8 (OCH2), 74.5 (C2-a-CD), 74.8 (C5-a-CD), 76.7 (C3-a-
CD), 84.1 (C4-a-CD), 96.3 (C6H3), 96.8 (C6H3), 105.0 (C1-a-CD), 131.1
(C5H5N), 147.0 (C5H5N), 148.4 (C5H5N), 163.0 (C6H3), 164.1 ppm (C6H3);
AHCTUNGTRENNUNG
(a-CD)2]Cl (0.9 mm, 2%), while signals of free a-CD was not observed.
Further addition of a-CD (68.1 mg, 7.01ꢁ10À2 mmol) to the solution at
608C and cooling to room temperature gave a hydrogel. 1H and 13C{1H}
13C{1H} NMR data of [1c·
ACHTNUTRGNEUG(N a-CD)2]Br (125 MHz, D2O, RT): d=29.7
NMR spectra of the gel showed the presence of [1b·ACHTNUGTRENNUG(a-CD)]Cl, [1b·ACHTUNTGREN(NUGN a-
(CH2), 29.9 (CH2), 33.2 (CH2), 33.8 (CH2), 33.9 (CH2), 34.1 (CH2), 34.6
(CH2), 34.7 (CH2), 35.0 (CH2), 35.4 (CH2), 58.5 (OCH3), 62.4 (C6-a-CD),
62.9 (C6’-a-CD), 64.7 (NCH2), 71.6 (OCH2), 75.1 (C2-a-CD), 74.8 (C5-a-
CD), 76.7 (C3-a-CD), 83.4 (C4-a-CD), 94.9 (C6H3), 96.4 (C6H3), 105.3
(C1-a-CD), 105.4 (C1’-a-CD), 131.3 (C5H5N), 147.1 (C5H5N), 148.9
(C5H5N), 162.7 (C6H3), 164.5 ppm (C6H3); signals of C2’-, C3’-, C4’-, and
C5’-a-CD were significantly overlapped with the signal of free a-CD. The
assignment was supported by 1H–1H COSY, 1H–13C COSY, and ROESY
CD)2]Cl, and free a-CD. The concentrations of the compounds were de-
termined from the peak area ratio of the ortho-C6H3 proton. 1H NMR
data of [1b·ACHTUNGTRENNUNG(a-CD)]Cl showed that the secondary hydroxyl groups in the
a-CD face the C6H3-3,5-(OMe)2 moiety (400 MHz, D2O, RT): d=1.95
(m, 2H; NCH2CH2), 5.97 (s, 2H; ortho-C6H3), 6.07 (s, 1H; para-C6H3);
1H NMR data of [1b·
ACHTUNGTRENNUNG(a-CD)]Cl showed that the primary hydroxyl groups
in the a-CD face the C6H3-3,5-(OMe)2 moiety (400 MHz, D2O, RT): d=
1.84 (m, 2H; NCH2CH2), 6.05 (s, 1H; para-C6H3), 6.13 (s, 2H; ortho-
C6H3); 1H NMR data of [1b·
ACHTUNGTRENNUNG
spectroscopy in D2O); MS (MALDI-TOF) data of [1c·ACHTNUTRGNE(NUG a-CD)]Br: m/z
calcd for C61H98NO33: 1372.6 [MÀBr]+; found 1373.4; MS (MALDI-
TOF) data of [1c·CATHUNGTRNE(GUN a-CD)2]Br: m/z calcd for C97H158NO63: 2344.9
A
ACHTUNGTRENNUNG
[MÀBr]+; found 2347.6.
AHCTUNGTRENNUNG
Thermodynamic parameters of [2]- and [3]pseudorotaxane and hydrogel
formation
AHCTUNGTRENNUNG
Formation of [1a·
ACHUTGTNRENNUG(a-CD)]Cl: The equilibrium constants for [1a·ACHTUNGTRENNUNG
ACHTUNGTRENNUNG
CD)]Cl formation (K1 =[[1a·AHCTUNRTGEG(NUNN a-CD)]Cl]/ACHTUTGNRENNUG[1aCl]ACUTHNGTRENNUNG
31.9 (CH2), 32.2 (CH2), 32.7 (CH2), 33.4 (CH2), 33.6 (2C; CH2), 58.1
(OCH3), 62.2 (C6-a-CD), 64.4 (NCH2), 70.6 (OCH2), 74.2 (C2-a-CD),
74.5 (C5-a-CD), 76.5 (C3-a-CD), 83.7 (C4-a-CD), 95.7 (C6H3), 96.5
(C6H3), 104.6 (C1-a-CD), 130.8 (C5H5N), 146.6 (C5H5N), 148.1 (C5H5N),
by means of 1H NMR spectroscopy. 1aCl (5.3 mg, 1.4ꢁ10À2 mmol) and
a-CD (6.8 mg, 7.0ꢁ10À3 mmol) were charged to a NMR tube. After addi-
1
tion of D2O (1.40 mL) to the mixture, H NMR spectra were recorded at
various temperatures (303, 313, 323, 333, and 343 K). The concentration
162.5 (C6H3), 163.7 ppm (C6H3); 13C{1H} NMR data of [1b·
ACTHNUTRGNEU(GN a-CD)2]Cl
of the 1aCl and [1a·ACTHNUTRGNEU(GN a-CD)]Cl at each temperatures were obtained by
(100 MHz, D2O, RT): d=62.5 (a-CD), 63.1 (a-CD), 75.3 (a-CD), 76.7
(a-CD), 83.0 (a-CD), 84.2 ppm (a-CD); other signals significantly over-
comparison of 1H NMR peak area ratio of the signals d and d’. Plotting
the natural logarithm of K1 against reciprocal absolute temperature gave
straight lines (R2 =0.99), which provide DH1ꢀ and DSꢀ1.
lapped with signals of [1b·
ACHTUNGTRENUN(NG a-CD)]Cl and free a-CD. The assignment was
supported by 1H–1H COSY, 1H–13C COSY, and ROESY spectroscopy in
Formation of [1b·
A
ACHTUNGTRENNUNG(a-
D2O); MS (MALDI-TOF) data of [1b·ACTHUNTGRNEUNG(a-CD)]Cl: m/z calcd for
C61H98NO33: 1344.6 [MÀCl]+; found 1344.6; MS (MALDI-TOF) data of
CD)]Cl formation (K1 =[[1b·AHCTNUGTRENNNUG
in a similar way. 1bCl (2.9 mg, 7.0ꢁ10À3 mmol) and a-CD (3.4 mg, 3.5ꢁ
[1b·
2316.7.
[2]- and [3]pseudorotaxanes of 1cBr and a-CD ([1c·ACHTNUGTRNEUN(G a-CD)]Br and [1c·-
(a-CD)2]Cl: m/z calcd for C97H158NO63
:
2316.9 [MÀCl]+; found
10À3 mmol) were charged to
a NMR tube. After addition of D2O
1
(0.70 mL) to the mixture, H NMR spectra were recorded at various tem-
peratures (308, 313, 333, 343, and 353 K). At each temperature, the sig-
nals of [1b·ACHTNUTRGENNG(U a-CD)2]Cl were not observed. Plotting the natural logarithm
ACHTUNGTRENNUNG
(a-CD)2]Br): 1cBr (6.7 mg, 1.4ꢁ10À2 mmol) and a-CD (13.6 mg, 1.40ꢁ
10À2 mmol) were charged to an NMR tube. After addition of D2O
(0.70 mL) to the mixture at room temperature, the 1H NMR spectrum of
of the K1 against reciprocal absolute temperature gave straight lines
(R2 =0.98), which provide DH1ꢀ and DSꢀ1.
the resulting mixture contained signals of 1cBr (6.5 mm, 32%), [1c·
CD)]Br, in which the secondary hydroxy groups in the a-CD are in close
proximity to the C6H3-3,5-(OMe)2 moiety (7.7 mm, 39%), [1c·(a-CD)]Br,
in which the primary hydroxy groups in the a-CD are close to the C6H3-
3,5-(OMe)2 moiety (1.4 mm, 7%), and [1c·(a-CD)2]Br (4.4 mm, 22%).
Further addition of a-CD (47.7 mg, 4.91ꢁ10À2 mmol) to the solution led
to formation of [1c·
(a-CD)2]Br as major component. 1H and 13C{1H}
NMR spectra of the solution showed the existence of [1c·(a-CD)2]Br and
free a-CD. The concentration of the compounds was determined from
the peak area ratio of the ortho-C6H3 proton. 1H NMR data of [1c·
(a-
CD)]Br showed that the secondary hydroxyl groups in the a-CD face the
C6H3-3,5-(OMe)2 moiety (500 MHz, D2O, RT): d=6.04 (d, 3J
(H,H)=
(H,H)=2, 2 Hz, 1H; para-C6H3);
ACHTUNGERTN(NUNG a-
Formation of [1b·
CD)2]Cl formation (K2 =[[1b·
determined in similar way. 1bCl (20.4 mg, 0.05 mmol) and a-CD
G
ACHTUNGTRENNUNG(a-
A
E
N
ACHTUNGTRENNUNG
AHCTUNGTRENNUNG
a
(97.3 mg, 0.10 mmol) were charged to a NMR tube. After addition of
D2O (0.70 mL) in the presence of NEt4Cl (5.0 mm) to the mixture,
1H NMR spectra were recorded at various temperatures (308, 311, 313,
318, 323, and 328 K). At each temperature, the signals of 1bCl were not
observed. Plotting the natural logarithm of the K2 against reciprocal ab-
solute temperature gave straight lines (R2 =0.97), which provide DH2ꢀ and
DSꢀ2.
AHCTUNGTRENNUNG
ACHTUNGTRENNUNG
AHCTUNGTRENNUNG
AHCTUNGTRENNUNG
T
Formation of [1c·
A
ACHTUNGTRENNUNG(a-
2 Hz, 2H; ortho-C6H3), 6.08 (dd, 3J
A
CD)]Br formation (K1 =[[1c·
A
R
ACHTUNGTRENNUNG
Chem. Eur. J. 2010, 16, 6518 – 6529
ꢀ 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
6527