S. Kim et al. / Tetrahedron Letters 51 (2010) 1899–1901
1901
(entry 1). In the case of compound 1c generated from cyclohexan-
ecarbaldehyde, furan 2c was selectively obtained in 71% yield (en-
try 2). Enyne-1,6-diol 1d having 4-methyl-4-pentenylidene group
at C-2 position turned out to be compatible with the employed
reaction conditions, affording 2d (1:3.2) in 81% (entry 4). This
isomerization may be due to the coordination of gold to the C–C
double bond or acidic conditions. Altering the electron demand
of the substituents on aromatic rings did not diminish the effi-
ciency or selectivity (entries 5–10). Under the optimum reaction
conditions, 3-hexyne-1,6-diol 1e having 4-chlorophenyl group
gave rise to the desired product 2e in 84% yield (entry 5). Enyne-
1,6-diol (1f and 1h) bearing 4-methylphenyl and 3-methoxy-phe-
nyl group were cleanly converted to the desired furans (2f and 2h)
in 83% and 80% yields, respectively (entries 6 and 8). However, eny-
ne-1,6-diol having 2,4,6-trimethyl-phenyl group afforded furan 2g
in 68% yield due to steric hindrance (entry 7). It is noteworthy that
the additional hydroxyl group on substrate did not affect the effi-
ciency of the cyclization reactions, producing furan 2i in 89% yield
(entry 9). Enyne-1,6-diol 1j bearing electron-withdrawing group
such as 4-methoxycarbonyl group was treated with 5 mol %
Ph3PAuCl in the presence of 5 mol % AgOTf as a cocatalyst to result
in the selective formation of functionalized furan 2j in 90% yield
(entry 10).
A plausible reaction pathway is described in Scheme 3. Thus,
coordination of the gold catalyst to triple bond in 3-hexyne-1,6-
diols 1 results in the formation of the intermediate 4 which, upon
nucleophilic attack of the hydroxyl oxygen atom on 1-position to a
gold-coordinated C–C triple bond, is cyclized to the vinylgold com-
plex 5. Release of the proton from 5 followed by protodeauration of
6 affords the 4,5-dihydrofuran derivatives 7 and regenerates the
gold cationic active species. Finally, compounds 7 easily isomerize
to functionalized furans 2. Surprisingly, no other cyclic compound
such as 3 (disubstituted 4,5-dihydrofuran) through nucleophilic at-
tack of the hydroxyl oxygen atom on C-6-position to a gold-coordi-
nated C–C triple bond is formed. Although the reason for selective
attack of the hydroxyl oxygen atom on C1-position to gold-coordi-
nated C–C triple bond has not been established at present, it seems
that geometry and bond distance between triple bond and hydro-
xyl group and bond angle on C-2 and C-5-position might be impor-
tant factors. The elucidation of the detailed reaction mechanism
must wait further study.
In summary, we have developed an efficient synthetic method
of trisubstituted furans from the treatment of enyne-1,6-diols with
5 mol % Ph3PAuCl and 5 mol % AgOTf in CH2Cl2 at room tempera-
ture through selective cyclization followed by isomerization.
Acknowledgments
This work was supported by the KRF Grant funded by the Kor-
ean Government (KRF-2008-314-C00213), by the KOSEF through
the NRL Program funded by the MOST (No. M10600000203-
06J0000-20310), by the National Research Foundation of Korea
(NRF) grant funded by the Korea government (MEST) (2009-
0087013), and by Korea Sanhak Foundation. This work was sup-
ported by the second phase of the Brain Korea 21 Program in
2009. Dr. Sung Hong Kim at the KBSI (Daegu) is thanked for obtain-
ing the MS data. The NMR data were obtained from the central
instrumental facility in Kangwon National University.
References and notes
1. (a) Dean, F. M. In Naturally Occurring Oxygen Ring Compounds; Butterworth:
London, 1963; (b) Nakanishi, K.; Goto, T.; Ito, S.; Natori, S.; Nozoe, S.. In Natural
Products Chemistry; Kodansha: Tokyo, 1974; Vols. 1–3, (c) Dean, F. M.. In
Advances in Heterocyclic Chemistry; Katritzky, A. R., Ed.; Academic Press: New
York, 1983; Vol. 31, p 237; (d) Sargent, M. V.; Dean, F. M.. In Comprehensive
Heterocyclic Chemistry; Bird, C. W., Cheeseman, G. W. H., Eds.; Pergamon Press:
Oxford, 1984; Vol. 3, p 599; (e) Lipshutz, B. H. Chem. Rev. 1986, 86, 795; (f)
Heaney, H.; Ahn, J. S.. In Comprehensive Heterocyclic Chemistry II; Katritzky, A. R.,
Rees, C. W., Scriven, E. F. V., Eds.; Pergamon Press: Oxford, 1996; Vol. 2, p 297;
(g) Faul, M. M.; Huff, B. E. Chem. Rev. 2000, 100, 2407; (h) Fernandez, J. J.; Souto,
M. L.; Norte, M. Nat. Prod. Rep. 2000, 23, 26; (i) Konig, B.. In Maas, G., Ed.;
Science of Synthesis, Houben–Weyl Methods of Molecular Transformations;
Thieme Verlag: Stuttgart, 2001; Vol. 9, p 183; (j) Eicher, T.; Hauptmann, S.. In
The Chemistry of Heterocycles: Structure, Reactions, Syntheses, and Applications;
Wiley-VCH: Weinheim, 2003; (k) Blunt, J. W.; Copp, B. R.; Munro, M. H.;
Northcote, G. P. T.; Prinsep, M. R. Nat. Prod. Rep. 2006, 17, 235.
2. (a) Heaney, H. In Natural Products Chemistry; Nakanishi, K., Ed.; Kodansha:
Tokyo, 1974; p 297; (b) Sundberg, R. J.. In Comprehensive Heterocyclic Chemistry;
Katrizky, A. R., Rees, C. W., Eds.; Pergamon: New York, 1984; Vol. 5, p 313; (c)
Hou, X. L.; Cheung, H. Y.; Hon, T. Y.; Kwan, P. L.; Lo, T. H.; Tong, S. Y. T.; Wong, H.
N. C. Tetrahedron 1998, 54, 1955; (d) Keay, B. A. Chem. Soc. Rev. 1999, 28, 209;
(e) Shipman, M. Contemp. Org. Synth. 1995, 2, 1; (f) Hou, X. L.; Yang, Z.; Wong, H.
N. C.. In Progress in Heterocyclic Chemistry; Gribble, G. W., Gilchrist, T. L., Eds.;
Pergamon: Oxford, 2002; Vol. 14, p 139.
3. (a) Hashmi, A. S. K. Angew. Chem., Int. Ed. Engl. 1995, 34, 1581; (b) Sromek, A.
W.; Kel’in, A. V.; Gevorgyan, V. Angew. Chem., Int. Ed. 2004, 43, 2280; (c) Patil, N.
T.; Wu, H.; Yamamoto, Y. J. Org. Chem. 2005, 70, 4531.
R
4. (a) Hashmi, A. S. K.; Hutchings, G. J. Angew. Chem., Int. Ed. 2006, 45, 7896; (b)
Hashmi, A. S. K.; Blanco, M. C.; Fischer, D.; Bats, J. W. Eur. J. Org. Chem. 2006,
1387; (c) Hashmi, A. S. K. Chem. Rev. 2007, 107, 3180; Gorin, D. J.; Toste, F. D.
Nature 2007, 446, 395; (d) Arcadi, A. Chem. Rev. 2008, 108, 3266; (e) Patil, N.;
Yamamoto, Y. Chem. Rev. 2008, 108, 3395; (f) Li, Z.; Brouwer, C.; He, C. Chem.
Rev. 2008, 108, 3239; (g) Shen, H. C. Tetrahedron 2008, 64, 3885; (h) Muzart, J.
Tetrahedron 2008, 64, 5815; (i) Skouta, R.; Li, C.-J. Tetrahedron 2008, 64, 4917;
(j) Hashmi, A. S. K.; Rudolph, M. Chem. Soc. Rev. 2008, 37, 1766.
5. (a) Hashmi, A. S. K.; Schwarz, L.; Choi, J.; Frost, T. M. Angew. Chem., Int. Ed. 2000,
39, 2285; (b) Dyker, G. Angew. Chem., Int. Ed. 2000, 39, 4237; (c) Sromek, A. W.;
Rubina, M.; Gevorgyan, V. J. Am. Chem. Soc. 2005, 127, 10500; (d) Zhou, C.-Y.;
Chan, P. W. H.; Che, C.-M. Org. Lett. 2006, 8, 325.
R
HO
O
2
R
HO
R
O
7
LAu+
3
4
2
5
1
6
H+
R
R
OH
HO
1
6. (a) Yao, T.; Zhang, X.; Larock, R. C. J. Am. Chem. Soc. 2004, 126, 11164; (b) Yao, T.;
Zhang, X.; Larock, R. C. J. Org. Chem. 2005, 70, 7679.
LAu+
7. Liu, Y.; Song, F.; Song, Z.; Liu, M.; Yan, B. Org. Lett. 2005, 7, 5409.
8. Zhang, J.; Schmalz, H.-G. Angew. Chem., Int. Ed. 2006, 45, 6704.
LAu
R
9. (a) Hashmi, A. S. K.; Sinha, P. Adv. Synth. Catal. 2004, 356, 432; (b) Shu, X.-Z.; Liu,
X.-Y.; Xiao, H.-Q.; Ji, K.-G.; Guo, L.-N.; Qi, C.-Z.; Liang, Y.-M. Adv. Synth. Catal.
2007, 349, 2493; (c) Dai, L.-Z.; Shi, M. Tetrahedron Lett. 2008, 49, 6437.
10. Aponick, A.; Li, C.-Y.; Malinge, J.; Marques, E. F. Org. Lett. 2009, 11, 4624.
11. (a) Fukuda, Y.; Utimoto, K. J. Org. Chem. 1991, 56, 3729; (b) Teles, J. H.; Brode, S.;
Chabanas, M. Angew. Chem., Int. Ed. 1998, 37, 1415; (c) Antoniotti, S.; Genin, E.;
Michelet, V.; Genet, J.-P. J. Am. Chem. Soc. 2005, 127, 9976.
12. Belting, V.; Krause, N. Org. Lett. 2006, 8, 4489.
13. Kim, S.; Lee, P. H. Adv. Synth. Catal. 2008, 350, 547.
14. Kim, S.; Lee, K.; Seomoon, D.; Lee, P. H. Adv. Synth. Catal. 2007, 349, 2449.
15. Kim, S.; Lee, P. H. Eur. J. Org. Chem. 2008, 2262.
R
R
HO
R
O
6
O
H
O
H
4
LAu
R
H+
3
R
O
HO
R
O +
H
R
5
HO
Scheme 3. Plausible mechanism for furan synthesis catalyzed by Au.