pubs.acs.org/joc
applications in pharmaceutical use2 and material science.3
Gold-Catalyzed Cyclization of Alkynylaziridines as
an Efficient Approach toward Functionalized
N-Phth Pyrroles
Furthermore, substituted pyrroles are of significant interest
since they are useful and versatile synthetic intermediates for
further structural elaboration.4 As a consequence, much
attention has been paid to the synthesis of pyrrole derivatives
either by classic methods such as the Paal-Knorr5 and
Hantzsch syntheses6 or by transition metal-catalyzed reac-
tions.7 In particular, protocols relying on intramolecular
cyclization of alkynes bearing proximate nucleophiles utiliz-
ing gold as catalyst have received considerable attention.8 In
a recent example, Hashmi et al. had reported an elegant
application for the transformation of alkynyl epoxides to
furans catalyzed by AuCl3.9 We have also developed several
gold-catalyzed processes for the efficient construction of
furans, pyrroles, indole-fused carbocycles, etc. from eny-
nols.10 We envisioned that if the double bond of these enyne
substrates is further elaborated to the aziridine moiety, it
may afford functionalized pyrroles. During our ongoing
work, several groups have reported gold-catalyzed cycliza-
tion of alkynylaziridines to N-Ts11a,b or N-Bn11c pyrroles. In
their reports, the functional groups have rarely been intro-
duced, and only disubstituted pyrroles were prepared. There-
fore, increasing the functional group tolerance and structure
scope of the current procedures is still highly attractive.
Herein we’d like to report a gold-catalyzed cyclization of
Xiangwei Du, Xin Xie, and Yuanhong Liu*
State Key Laboratory of Organometallic Chemistry,
Shanghai Institute of Organic Chemistry, Chinese Academy of
Sciences, 345 Lingling Lu, Shanghai 200032, People’s
Republic of China
Received November 3, 2009
An efficient access to N-phth pyrrroles via gold-catalyzed
cycloisomerization of N-phth alkynylaziridines has been
described. Functionalized pyrroles including pyrrole-2-
carboxylates or 2-pyrrolyl ketone are easily constructed
in generally good yields by this method. The resulting
pyrroles can be further converted to N-amino pyrrole or
2-acyl pyrrole, which are important synthetic intermedi-
ates for amplification of molecular complexity.
(4) For example see: Boger, D. L.; Boyce, C. W.; Labrilli, M. A.; Sehon,
C. A.; Jin, Q. J. Am. Chem. Soc. 1999, 121, 54.
(5) (a) Knorr, L. Ber. Dtsch. Chem. Ges. 1884, 17, 1635. (b) Paal, C. Chem.
Ber. 1885, 18, 367.
(6) Hantzsch, A. Ber. Dtsch. Chem. Ges. 1890, 23, 1474.
(7) Recent examples see: (a) Gabriele, B.; Salerno, G.; Fazio, A. J. Org.
Chem. 2003, 68, 7853. (b) Istrate, F. M.; Gagosz, F. Org. Lett. 2007, 9, 3181.
(c) Yuan, X.; Xu, X.; Zhou, X.; Yuan, J.; Mai, L.; Li, Y. J. Org. Chem. 2007,
72, 1510. (d) Li, E.; Xu, X.; Li, H.; Zhang, H.; Xu, X.; Yuan, X.; Li, Y.
Tetrahedron 2009, 65, 8961. (e) Martın, R.; Larsen, C. H.; Cuenca, A.;
´
€
Buchwald, S. L. Org. Lett. 2007, 9, 3379. (f) Braun, R. U.; Zietler, K.; Muller,
T. J. J. Org. Lett. 2001, 3, 3297. (g) Nishibayashi, Y.; Yoshikawa, M.; Inada,
Y.; Milton, M. D.; Hidai, M.; Uemura, S. Angew. Chem., Int. Ed. 2003, 42,
2681. (h) Shiraishi, H.; Nishitani, T.; Sakaguchi, S.; Ishii, Y. J. Org. Chem.
1998, 63, 6234. (i) Gorin, D. J.; Davis, N. R.; Toste, D. F. J. Am. Chem. Soc.
2005, 127, 11260. (j) Kel’in, A. V.; Sromek, A. W.; Gevorgyan, V. J. Am.
Chem. Soc. 2001, 123, 2074. (k) Declerk, V.; Ribiere, P.; Martinez, J.;
Lamaty, F. J. Org. Chem. 2004, 69, 8372. (l) Kamijo, S.; Kanazawa, C.;
Yamamoto, Y. J. Am. Chem. Soc. 2005, 127, 9260. (m) Larionov, O. V.; de
Meijere, A. Angew. Chem., Int. Ed. 2005, 44, 5664.
Pyrroles are one of the most important classes of hetero-
cyclic compounds as they widely occur as key structural
subunits in numerous natural products which exhibit
interesting biological activities,1 and can find a variety of
(8) For recent reviews on gold-catalyzed reactions, see: (a) Hashmi,
A. S. K. Chem. Rev. 2007, 107, 3180. (b) Ma, S.; Yu, S.; Gu, Z. Angew. Chem.,
Int. Ed. 2006, 45, 200. (c) Li, Z.; Brouwer, C.; He, C. Chem. Rev. 2008, 108,
3239. (d) Lipshutz, B. H.; Yamamoto, Y. Chem. Rev. 2008, 108, 2793. (e)
(1) (a) Sundberg, R. J. In Comprehensive Heterocyclic Chemistry II;
Katritsky, A. R., Rees, C. W., Scriven E. F. V., Eds.; Elsevier: Oxford, UK,
1996; Vol. 2. For selected examples, see : (b) Aiello, A.; D'Esposito, M.;
Fattorusso, E.; Menna, M.; Mueller, W. E. G.; Perovic-Ottstadt, S.; Schroeder,
H. C. Bioorg. Med. Chem. 2006, 14, 17. (c) Lewer, P.; Chapin, E. L.; Graupner,
P. R.; Gilbert, J. R.; Peacock, C. J. Nat. Prod. 2003, 143. (d) F€urstner, A. Angew.
Chem., Int. Ed. 2003, 42, 3582. (e) Balme, G. Angew. Chem., Int. Ed. 2004, 43,
6238. (f) Jacquot, D. E. N.; ZGllinger, M.; Lindel, T. Angew. Chem., Int. Ed.
2005, 44, 2295. (g) Garrido-Hernandez, H.; Nakadai, M.; Vimolratana, M.; Li, Q.;
Doundoulakis, T.; Harran, P. G. Angew. Chem., Int. Ed. 2005, 44, 765. (h)
Gottesfeld, J. M.; Neely, L.; Trauger, J. W.; Baird, E. E.; Dervan, P. B. Nature
1997, 387, 202.
ꢀ
ꢀ~
Arcadi, A. Chem. Rev. 2008, 108, 3266. (f) Jimenez-Nunez, E.; Echavarren,
A. M. Chem. Rev. 2008, 108, 3326. (g) Gorin, D. J.; Sherry, B. D.; Toste, F. D.
Chem. Rev. 2008, 108, 3351. (h) Patil, N. T.; Yamamoto, Y. Chem. Rev. 2008,
108, 3395.
(9) (a) Hashmi, A. S. K.; Sinha, P. Adv. Synth. Catal. 2004, 346, 432. For
related papers see: (b) Yoshida, M.; Al-Amin, M.; Matsuda, K.; Shishido, K.
Tetrahedron Lett. 2008, 49, 5021. (c) Blanc, A.; Tenbrink, K.; Weibel, J.; Pale,
P. J. Org. Chem. 2009, 74, 4360. (d) Blanc, A.; Tenbrink, K.; Weibel, J.; Pale,
P. J. Org. Chem. 2009, 74, 5342.
(2) For selected examples, see: (a) Clark, B. R.; Capon, R. J.; Lacey, E.;
Tennant, S.; Gill, J. H. Org. Lett. 2006, 8, 701. (b) Bode, H. B.; Irschik, H.;
Wenzel, S. C.; Reichenbach, H.; Mueller, R.; Hoefle, G. J. Nat. Prod. 2003,
1203. (c) Huffman, J. W. Curr. Med. Chem. 1999, 6, 705.
(3) (a) Curran, D.; Grimshaw, J.; Perera, S. D. Chem. Soc. Rev. 1991, 20,
391. For selected examples, see: (b) Ogawa, K.; Rasmussen, S. C. Macro-
molecules 2006, 35, 1771. (c) Facchetti, A.; Abbotto, A.; Beverina, L.; van der
Boom, M. E.; Dutta, P.; Evmenenko, G.; Pagani, G. A.; Marks, T. J. Chem.
Mater. 2003, 15, 1064.
(10) (a) Liu, Y.; Song, F.; Song, Z.; Liu, M.; Yan, B. Org. Lett. 2005, 7,
5409. (b) Du, X.; Song, F.; Lu, Y.; Chen, H.; Liu, Y. Tetrahedron 2009, 65,
1839. (c) Guo, S.; Song, F.; Liu, Y. Synlett 2007, 964. (d) Lu, Y.; Fu, X.;
Chen, H.; Du, X.; Jia, X.; Liu, Y. Adv. Synth. Catal. 2009, 351, 129. (e) Lu, Y.;
Du, X.; Jia, X.; Liu, Y. Adv. Synth. Catal. 2009, 351, 1517. (f) Chen, Y.; Lu,
Y.; Li, G.; Liu, Y. Org. Lett. 2009, 11, 3838.
(11) (a) Davies, P. W.; Martin, N. Org. Lett. 2009, 11, 2293. (b) Chen, D.;
Hou, X.; Dai, L. Tetrahedron Lett. 2009, 50, 6944. (c) Yoshida, M.; Al-Amin,
M.; Shishido, K. Synthesis 2009, 2454.
510 J. Org. Chem. 2010, 75, 510–513
Published on Web 12/14/2009
DOI: 10.1021/jo902357x
r
2009 American Chemical Society