Q. Huang et al. / European Journal of Medicinal Chemistry 46 (2011) 5680e5687
5687
[11] C. Uyttenhove, L. Pilotte, I. Théate, V. Stroobant, D. Colau, N. Parmentier,
T. Boon, B.J. Van den Eynde, Evidence for a tumoral immune resistance
mechanism based on tryptophan degradation by indoleamine 2,3-
dioxygenase, Nat. Med. 9 (2003) 1269e1274.
[12] A. Okamoto, T. Nikaido, K. Ochiai, S. Takakura, M. Saito, Y. Aoki, N. Ishii,
N. Yanaihara, K. Yamada, O. Takikawa, R. Kawaguchi, S. Isonishi, T. Tanaka,
cells (stimulator cells) were added to each well of a 96-well plate in
RPMI1640 containing 10% FBS. Cell proliferation was quantified by
WST-1 (KenGEN, Nanjing, China) method, which is based on the
cleavage of the tetrazolium salt WST-1 by mitochondrial dehydroge-
nases in viable cells to a water-soluble formazen dye. The cells were
M. Urashima, Indoleamine 2,3-dioxygenase serves as
a marker of poor
incubated at 37 ꢀC, 5% CO2 for 4 days; and 10
ml WST-1 was added to
prognosis in gene expression profiles of serous ovarian cancer cells, Clin.
Cancer Res. 11 (2005) 6030e6039.
each well. 1 h later, the cells were shaken thoroughly for 1 min on
a shaker. The absorbance was measured using a SPECTRAmax 250
microplate reader (Molecular Devices, Sunnyvale, CA) at 450 nM.
[13] A.J. Muller, J.B. DuHadaway, P.S. Donover, E. Sutanto-Ward, G.C. Prendergast,
Inhibition of indoleamine 2,3-dioxygenase, an immunoregulatory target of
the cancer suppression gene Bin1, potentiates cancer chemotherapy, Nat.
Med. 11 (2005) 312e319.
[14] D.Y. Hou, A.J. Muller, M.D. Sharma, J. DuHadaway, T. Banerjee, M. Johnson,
A.L. Mellor, G.C. Prendergast, D.H. Munn, Inhibition of indoleamine 2,3-
dioxygenase in dendritic cells by stereoisomers of 1-methyl-tryptophan
correlates with antitumor responses, Cancer Res. 67 (2007) 792e801.
[15] A.C. Peterson, A.J.L. Loggia, L.K. Hamaker, R.A. Arend, P.L. Fisette, Y. Okazi,
4.9. Molecular docking
The AutoDock program (Version 4.2) with the Lamarckian
genetic algorithm [28,29] was used for the molecular docking to
predict the binding modes of compounds 1, 6 and 8 to the human
IDO. The occupied position of the ligand inhibitor PI in the IDO
structure (PDB code: 2D0T) was used as the center of the grid box for
J.A. Will, R.R. Brown, J.M. Cook, Evaluation of substituted
b-carbolines as
noncompetitive indoleamine 2,3-dioxygenase inhibitors, Med. Chem. Res. 3
(1993) 473e482.
[16] A.J. Muller, W.P. Malachowski, G.C. Prendergast, Indoleamine 2,3-dioxygenase
in cancer: targeting pathological immune tolerance with small-molecule
inhibitors, Expert Opin. Ther. Targets 9 (2005) 831e849.
ꢀ
docking, and the size of the grid box was 60 ꢂ 60 ꢂ 60 A. Pretreat-
[17] S.G. Cady, M. Sono, 1-Methyl-DL-tryptophan,
b-(3-benzofuranyl)-DL-alanine
ment of the compounds and the IDO receptor structure for docking
was carried out with the AutoDockTools program suite (see http://
were conducted for each compound. To perform the Lamarckian
genetic algorithm, a population of 150 random ligand conformations
in random orientations and at random translations was first
generated, and then the population evolved according to the algo-
rithm and terminated after 27,000 generations and a maximum of
1,500,000 energy evaluations. Other parameters for running the
program were set to the default values in the AutoDock program.
(the oxygen analogue of tryptophan), and -[3-benzo(b)thienyl]-DL-alanine
b
(the sulfur analogue of tryptophan) are competitive inhibitors of indoleamine
2,3-dioxygenase, Arch. Biochem. Biophys. 291 (1991) 326e333.
[18] H.C. Brastianos, E. Vottero, B.O. Patrick, Exiguamine A, an indoleamine 2,3-
dioxygenase (IDO) inhibitor isolated from the marine sponge Neopetrosia
exigua, J. Am. Chem. Soc. 128 (2006) 16046e16047.
[19] A. Pereira, E. Vottero, M. Roberge, Indoleamine 2,3-dioxygenase inhibitors
from the northeastern pacific marine hydroid Garveia annulata, J. Nat. Prod. 69
(2006) 1496e1499.
[20] P. Gaspari, T. Banerjee, W.P. Malachowski, Structureeactivity study of bras-
sinin derivatives as indoleamine 2,3-dioxygenase inhibitors, J. Med. Chem. 49
(2006) 684e692.
[21] H. Sugimoto, S. Oda, T. Otsuki, T. Hino, T. Yoshida, Y. Shiro, Crystal structure of
human indoleamine 2,3-dioxygenase: catalytic mechanism of O2 incorpora-
tion by a heme-containing dioxygenase, Proc. Natl. Acad. Sci. U.S.A. 103 (2006)
2611e2616.
Acknowledgments
[22] S. Kumar, D. Jaller, B. Patel, J.M. LaLonde, J.B. DuHadaway, W.P. Malachowski,
G.C. Prendergast, A.J. Muller, Structure based development of
phenylimidazole-derived inhibitors of indoleamine 2,3-dioxygenase, J. Med.
Chem. 51 (2008) 4968e4977.
[23] U.F. Röhrig, L. Awad, A. Grosdidier, P. Larrieu, V. Stroobant, D. Colau,
V. Cerundolo, A.J. Simpson, P. Vogel, B.J. Van den Eynde, V. Zoete, O. Michielin,
Rational design of indoleamine 2,3-dioxygenase inhibitors, J. Med. Chem. 53
(2010) 1172e1189.
This work was sponsored by the National Natural Science
Foundation of China (No. 30873153), the National Drug Innovative
Program (No. 2009ZX09301-011) and the Shanghai Pujiang
Program. We thank Dr. Y. Hefner (1278 Avenida Miguel, Encinitas,
CA 92024, U.S.A.) for critical reading and editing this manuscript.
[24] C. Yu, M. Zheng, C. Kuang, W. Huang, Q. Yang, Oren-gedoku-to and its
constituents with therapeutic potential in Alzheimer’s disease inhibit indole-
amine 2,3-dioxygenase activity in vitro, J. Alzheimer’s Dis. 22 (2010) 257e266.
[25] Y.B. Jiang, C.X. Kuang, Q. Yang, CuI-catalyzed synthesis of 4-aryl-1H-1,2,3-
triazoles from anti-3-aryl-2,3-dibromopropanoic acids and sodium azide,
Synthesis 24 (2010) 4256e4260.
References
[1] S. Yamamoto, O. Hayaishi, Tryptophan pyrrolase of rabbit intestine. D-and L-
tryptophan-cleaving enzyme or enzymes, J. Biol. Chem. 242 (1976)
5260e5266.
[2] O. Takikawa, R. Yoshida, R. Kido, O. Hayaishi, Tryptophan degradation in mice
initiated by indoleamine 2,3-dioxygenase, J. Biol. Chem. 261 (1986)
3648e3653.
[3] M.P. Heyes, K.J. Saito, S. Crowley, L.E. Davis, M.A. Demitrack, M. Der,
L.A. Dilling, J. Elia, M.J.P. Kruesi, A. Lackner, S.A. Larsen, K. Lee, H.L. Leonard,
S.P. Markey, A. Martin, S. Milstein, M.M. Mouradian, M.R. Pranzatelli,
B.J. Quearry, A. Salazar, M. Smith, S.E. Strauss, T. Sunderland, S.W. Swedo,
W.W. Tourtellotte, Quinolinic acid and kynurenine pathway metabolism in
inflammatory and non-inflammatory neurological disease, Brain 115 (1992)
1249e1273.
[4] G.J. Guillemin, B.J. Brew, C.E. Noonan, O. Takikawa, K.M. Cullen, Indoleamine
2,3-dioxygenase and quinolinic acidimmunoreactivity in Alzheimer’s disease
hippocampus, Neuropath. Appl. Neurobiol. 31 (2005) 395e404.
[5] M.C. Wichers, M. Maes, The role of indoleamine 2,3-dioxygenase (IDO) in the
[26] Q. Yang, C.X. Kuang, M.F. Zheng, C.J. Yu, Preparation of 1,2,3-triazole
compounds as indolamine 2,3-dioxygenase inhibitors, China Patent. CODEN:
CNXXEV CN 101786993
A 20100728. Appl. No.: CN 2010-10134217
20100326. Priority: CN 2010-10134217 20100326. CAN 153:311246 AN
2010:948542 CAPLUS.
[27] M. Friberg, R. Jennings, M. Alsarraj, S. Dessureault, A. Cantor, M. Extermann,
A.L. Mellor, D.H. Munn, S.J. Antonia, Indoleamine 2,3-dioxygenase contributes
to tumor cell evasion of T cell-mediated rejection, Int. J. Cancer 101 (2002)
151e155.
[28] R. Huey, G.M. Morris, A.J. Olson, D.S. Goodsell, A semiempirical free energy
force field with charge-based desolvation, J. Comput. Chem. 28 (2007)
1145e1152.
[29] G.M. Morris, D.S. Goodsell, R.S. Halliday, R. Huey, W.E. Hart, Automated
docking using a Lamarckian genetic algorithm and an empirical binding free
energy function, J. Comput. Chem. 19 (1998) 1639e1662.
[30] C.X. Kuang, L.L. Kong, Preparation of 5-halo-4-aryl-1H-1,2,3 triazoles. China
patent. Appl. No.: 200910054881.
[31] Z.X. Wang, H.L. Qin, Regioselective synthesis of 1,2,3-triazole derivatives via
1,3-dipolar cycloaddition reactions in water, Chem. Commun. 19 (2003)
2450e2451.
[32] X.H. Li, B. Xu, K.L. Lv, A.Q. Zhang, Dimesitylborylphenyl substituted 1,3,4-
oxadiazole: synthesis, characterization and sensitivity to Fꢁ, Chin. Chem.
Lett. 22 (2011) 599e602.
[33] T.K. Littlejohn, O. Takikawa, D. Skylas, J.F. Jamie, M.J. Walker, Expression and
purification of recombinant human indoleamine 2,3-dioxygenase, Protein
Expr. Purif. 19 (2000) 22e29.
[34] D. Voet, J.G. Voet, Biochemistry, third ed. John Wiley & Sons, New York, 2001.
[35] A. Cornish-Bowden, A simple graphical method for determining the inhibition
constants of mixed, uncompetitive and non-competitive inhibitors, Biochem.
J. 137 (1974) 143e144.
pathophysiology of interferon-
a-induced depression, J. Psychiatry Neurosci.
29 (2004) 11e17.
[6] S. Vazquez, N.R. Parker, M. Sheil, R.J.W. Truscott, Protein-bound kynurenine
decreases with the progression of age-related nuclear cataract, Invest. Oph-
thalmol. Vis. Sci. 45 (2004) 879e883.
[7] A.M. Sardar, G.P. Reynolds, Frontal cortex indoleamine-2,3-dioxygenase
activity is increased in HIV-1-associated dementia, Neurosci. Lett. 187
(1995) 9e12.
[8] D.H. Munn, M. Zhou, J.T. Attwood, I. Bondarev, S.J. Conway, B. Marshall,
C. Brown, A.L. Mellor, Prevention of allogeneic fetal rejection by tryptophan
catabolism, Science 281 (1998) 1191e1193.
[9] A.L. Mellor, D.H. Munn, Tryptophan catabolism and T-cell tolerance: immu-
nosuppression by starvation, Immunol. Today 20 (1999) 469e473.
[10] A.L. Mellor, D.B. Keskin, T. Johnson, P. Chandler, D.H. Munn, Cells expressing
indoleamine 2,3-dioxygenase inhibit T cell responses, J. Immunol. 168 (2002)
3771e3776.