Gas Phase Reaction of the Cyclohexyl Radical with O2
J. Phys. Chem. A, Vol. 114, No. 3, 2010 1455
(8) Westbrook, C. K. Chem. Ind. (London) 1992, 100, 562.
(9) Rienstra-Kiracofe, J. C.; Allen, W. D.; Schaefer, H. F., III. J. Phys.
Chem. 2000, 104, 9823.
(10) Merle, J. K.; Hayes, C. J.; Zalyubovsky, S. J.; Glover, B. G.; Miller,
T. A.; Hadad, C. M. J. Phys. Chem. A 2005, 109, 3637.
(11) Hunziker, H. E.; Wendt, H. R. J. Chem. Phys. 1976, 64, 3488.
(12) Pushkarsky, M. B.; Zalyubovsky, S. J.; Miller, T. A. J. Chem. Phys.
2000, 112, 10695.
(13) Just, G. M. P.; Sharp, E. N.; Zalyubovsky, S. J.; Miller, T. A. Chem.
Phys. Lett. 2006, 417, 378.
(14) Glover, B. G.; Miller, T. A. J. Phys. Chem. A 2005, 109, 11191.
(15) Tarczay, G.; Zalyubovsky, S. J.; Miller, T. A. Chem. Phys. Lett.
2005, 406, 81.
(16) Zalyubovsky, S. J.; Glover, B. G.; Miller, T. A.; Hayes, C.; Merle,
J. K.; Hadad, C. M. J. Phys. Chem. A 2005, 109, 1308.
(17) Nandi, S.; Blanksby, S. J.; Zhang, X.; Nimlos, M.; Dayton, D.;
Ellison, G. B. J. Phys. Chem. A 2002, 106, 7547.
(18) Clifford, E. P.; Wenthold, P. G.; Gareyev, R.; Lineberger, W. C.;
DePuy, C. H.; Bierbaum, V. M.; Ellison, G. B. J. Chem. Phys. 1998, 109,
10293.
(19) Knepp, A. M.; Meloni, G.; Jusinski, L. E.; Taatjes, C. A.; Cavallotti,
C.; Klippenstein, S. J. Phys. Chem. Chem. Phys. 2007, 9, 4315.
(20) Yates, B. F.; Bouma, W. J.; Radom, L. J. Am. Chem. Soc. 1984,
106, 5805.
(21) Yates, B. F.; Bouma, W. J.; Radom, L. Tetrahedron 1986, 42, 6225.
(22) McNaught, A. D.; Wilkinson, A. IUPAC Compendium of Chemical
Terminology, 2nd ed.; Blackwell Scientific Publications: Oxford, U.K., 1997.
(23) Petzold, C. J.; Nelson, E. D.; Lardin, H. A.; Kentta¨maa, H. I. J.
Phys. Chem. 2002, 106, 9767.
(24) Stirk, K. M.; Kiminkinen, L. K. M.; Kentta¨maa, H. I. Chem. ReV.
1992, 92, 1649.
(25) Kentta¨maa, H. Ion-Molecule Reactions of Distonic Radical
Cations. In Encyclopedia of Mass Spectrometry; Nibbering, N. M. M., Ed.;
Elsevier: Amsterdam, 2005; Vol. 4, pp 160.
(26) Yu, S. J.; Holliman, C. L.; Rempel, D. L.; Gross, M. L. J. Am.
Chem. Soc. 1993, 115, 9676.
(27) Sorrilha, A.; Gozzo, F. C.; Pimpim, R. S.; Eberlin, M. N. J. Am.
Soc. Mass. Spectrom. 1996, 7, 1126.
(28) Xia, Y.; Chrisman, P. A.; Pitteri, S. J.; Erickson, D. E.; McLuckey,
S. A. J. Am. Chem. Soc. 2006, 128, 11792.
anion and previous theoretical investigations of the neutral
system. The congruence in the chemistry of E and its neutral
counterpart provide further confidence in the use of the distonic
radical anions as probes of neutral reactivity. Observation of
the 4-carboxylatocyclohexylperoxyl radical anion (I) at m/z 158,
provides direct evidence for the formation of a stabilized
cyclohexylperoxyl radical in the gas phase and is consistent with
the recent detection of the analogous neutral cyclohexylperoxyl
radical by cavity ring-down spectroscopy.56 The absence of
further reactivity of this ion with dioxygen indicates the absence
of isomeric hydroperoxylcyclohexyl radicals (e.g., K, M, and
P), often referred to as •QOOH radicals, in the ion population.
This is a significant observation, as these elusive radicals are
thought to be involved in low temperature chain branching
reactions because of the ability to add a second dioxygen. If
these intermediate species are formed under the conditions of
our experiment (2.5 mTorr and 307 K), they rapidly decompose
•
via loss of HO• and HO2 . The ability to synthesize and isolate
a model alkylperoxyl radical as described here provides a novel
pathway to probe the gas phase reactivity of these otherwise
elusive species. This approach offers promise for the study of
the bimolecular reactions of peroxyl radicals as well as their
gas phase photochemistry.
Finally, the reaction of this distonic alkyl radical with
dioxygen gives rise to characteristic products: the addition of
•
O2 (+32 Da) and neutral losses of HO• (+15 Da) and HO2
(-1 Da). Such diagnostic gas phase chemistry constitutes a mass
spectral fingerprint for not only the verification of distonic
radical character but also characterization of the structure of
the radical itself. As such, this study supports other recent
suggestions that dioxygen is an effective probe reagent for
elucidating the structure of the radical ions arising from
contemporary mass spectrometric techniques (e.g., electron
transfer dissociation and photodissociation).28,57
(29) Harman, D. G.; Blanksby, S. J. Chem. Commun. 2006, 8, 859.
(30) Harman, D. G.; Blanksby, S. J. Org. Biomol. Chem. 2007, 5, 3495.
(31) Feng, Y.; Liu, L.; Wang, J. T.; Zhao, S. W.; Guo, Q. X. J. Org.
Chem. 2004, 69, 3129.
(32) Silke, E. J.; Pitz, W. J.; Westbrook, C. K.; Ribaucour, M. J. Phys.
Chem. A 2007, 111, 3761.
(33) Fernandes, R. X.; Zador, J.; Jusinski, L. E.; Miller, J. A.; Taatjes,
C. A. Phys. Chem. Chem. Phys. 2009, 11, 1320.
(34) Schwartz, J. C.; Senko, M. W.; Syka, J. E. P. J. Am. Soc. Mass.
Spectrom. 2002, 13, 659.
(35) Gronert, S. J. Am. Soc. Mass. Spectrom. 1998, 9, 845.
(36) Su, T.; Bowers, M. T. Classical ion-molecule collision theory. In
Gas Phase Ion Chemistry; Bowers, M. T., Ed.; Academic Press: New York,
1979; Vol. 1, pp 83.
(37) Lim, K. F. Colrate Quantum Chemistry Program Exchange;
Geelong, Victoria, 1994.
(38) Grabowski, J. J.; Zhang, L. J. J. Am. Chem. Soc. 1989, 111, 1193.
(39) Becke, A. D. J. Chem. Phys. 1993, 98, 1372.
Acknowledgment. B.B.K. is supported through an Australian
Postgraduate Award. D.G.H. and S.J.B. acknowledge the
financial support of the Australian Research Council (DP0452849
and DP0986628) and the University of Wollongong. S.J.B. and
B.B.K. thank the Australian Partnership for Advanced Comput-
ing (ANU, Canberra) for a generous allocation of resources
under the Merit Allocation Scheme. We acknowledge Professor
Paul Wenthold and Dr. Adam Trevitt for helpful discussions
and the late Mr. Larry Hick whose technical ability and
friendship are sorely missed.
(40) Lee, C. T.; Yang, W. T.; Parr, R. G. Phys. ReV. B: Condens. Matter
1988, 37, 785.
Supporting Information Available: CID mass spectra and
lists of geometric parameters and electronic and zero-point
energies. This material is available free of charge via the Internet
(41) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb,
M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.;
Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.;
Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.;
Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.;
Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li,
X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.;
Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.;
Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.;
Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich,
S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.;
Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.;
Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz,
P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.;
Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson,
B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03,
revision C.02; Gaussian Inc.: Wallingford, CT, 2004.
References and Notes
(1) Lightfoot, P. D.; Cox, R. A.; Crowley, J. N.; Destriau, M.; Hayman,
G. D.; Jenkin, M. E.; Moortgat, G. K.; Zabel, F. Atmos. EnViron. 1992,
26A, 1805.
(2) Tyndall, G. S.; Cox, R. A.; Granier, C.; Lesclaux, R.; Moortgat,
G. K.; Pilling, M. J.; Ravishankara, A. R.; Wallington, T. J. J. Geophys.
Res. D: Atmos. 2001, 106, 12157.
(3) Finlayson-Pitts, B. J.; Pitts, J. N. Science 1997, 276, 1045.
(4) Finlayson-Pitts, B. J.; Pitts, J. N. Chemistry of the Upper and Lower
Amosphere; Academic Press: San Diego, 2000.
(5) Blanksby, S. J.; Ramond, T. M.; Davico, G. E.; Nimlos, M. R.;
Kato, S.; Bierbaum, V. M.; Lineberger, W. C.; Ellison, G. B.; Okumura,
M. J. Am. Chem. Soc. 2001, 123, 9585.
(42) Gonzalez, C.; Schlegel, H. B. J. Chem. Phys. 1989, 90, 2154.
(43) Gonzalez, C.; Schlegel, H. B. J. Phys. Chem. 1990, 94, 5523.
(44) Mateos, J. L.; Kwart, H.; Flores, H. J. Org. Chem. 1972, 37, 2826.
(45) Hirsch, J. A.; Truc, V. C. J. Org. Chem. 1986, 51, 2218.
(46) Mattson, B. M.; Anderson, M. P.; Mattson, S. E. Microscale Gas
Chemistry, 4th ed.; Educational Innovations: Norwalk, CT, 2006.
(6) Zhu, L.; Bozzelli, J. W.; Kardos, L. M. J. Phys. Chem. A 2007,
111, 6361.
(7) Sheng, C. Y.; Bozzelli, J. W.; Dean, A. M.; Chang, A. Y. J. Phys.
Chem. A 2002, 106, 7276.