C. Napolitano et al. / Tetrahedron Letters 50 (2009) 7280–7282
7281
OBn
PPh3, DEAD,
THF
EDC, HOBT,
BnONH2, THF
OH
COOH
OH
CONHOBn
N
N
O
quantitative
91%
N
R
N
Boc
Boc
Boc2O, NaOH,
THF/H2O
quantitative
R=H
R=Boc
4
Ra-Ni, H2,
MeOH
quantitative
1) BH3THF, THF;
2) Piperazine, H2O
Boc
NH
O
N
N
Buckwald-Hartwig
13%
O
NH
N
N
quantitative
Boc
HO
Boc
5
3
6
Scheme 2. First attempt to 1.
MsCl, TEA,
CH2Cl2
OH
COOMe
N3
OMs
SOCl2,
MeOH
quantitative
OH
COOH
NaN3, DMF
COOMe
N
Boc
10
COOMe
N
Boc
COOMe
96%
N
N
N
Pg
Boc
8
H
9
7a Pg=H
7b Pg=Boc
Boc2O, TEA,
CH2Cl2, 82%
PPh3,
THF/H2O
55% over 2 steps
BF3Et2O,
Cbz
N
H2, Pd/C,
MeOH
NHCbz
OR
NHR
DIBAL-H,
Toluene
54%
NH
t-BuOK, THF
48%
COOMe
N
Boc
quantitative
N
N
Boc
N
Boc
Boc
13
2
12a R=H
11a R=H
11b R=Cbz
12b R=Ms
MsCl, TEA,
CH2Cl2, 46%
CbzCl, NaOH,
Toluene, 94%
Scheme 3. Total synthesis of 2,6-diazabicyclo[3.2.0]heptane core.
PhBr, t-BuONa,
rac-BINAP,
Pd2(dba)3,
Toluene
Acknowledgements
Ph
NH
N
TFA, CH2Cl2
The authors wish to thank A. Casolari and E. Durini for careful
assistance in NMR experiments and structure assignments.
1
98%
32%
N
N
Boc
Boc
References and notes
13
14
Scheme 4. Derivatization to 1.
1. Jacquet, J.-P.; Bouzard, D.; Kiechel, J.-R.; Remuzon, P. Tetrahedron Lett. 1991,
32(12), 1565.
2. (a) Ji, J.; Schrimpf, M. R.; Sippy, K. B.; Bunnelle, W. H.; Li, T.; Anderson, D. J.;
Faltynek, C.; Surowy, C. S.; Dyhring, T.; Ahring, P. K.; Meyer, M. D. J. Med. Chem.
2007, 50, 5493; (b) Ji, J.; Bunnelle, W. H.; Li, T.; Pace, J. M.; Schrimpf, M. R.;
Sippy, K. B.; Anderson, D. J.; Meyer, M. D. Pure Appl. Chem. 2005, 77(12), 2041;
(c) Buckley, M. J.; Ji, J. U.S. Patent 2004242644, 2004.; (d) Schrimpf, M. R.;
Tietjie, K. R.; Toupence, R. B.; Ji, J.; Basha, A.; Bunnelle, W. H.; Daanen, J. E.; Pace,
J. M.; Sippy, K. B. International Patent WO0181347, 2001.
13,which could be condensed with bromobenzene to give 1413
with moderate yield. After removal of the Boc-protecting group un-
der acidic conditions the desired 6-phenyl-2,6-diazabicy-
clo[3.2.0]heptane (1) was isolated in almost quantitative yield
(Scheme 4).14
In conclusion, the first synthesis of 2,6-diazabicyclo[3.2.0]hep-
tane, a fused azetidine with high potential to be used as a building
block in medicinal chemistry, has been developed. The successful
3. Miller, M. J. Acc. Chem. Res. 1986, 19, 49.
4. Bellettini, J. R.; Miller, M. J. Tetrahedron Lett. 1997, 38(2), 167.
5. For an alternative synthesis of complex bicyclic b-lactam scaffold and its
synthetic applications, see: Steger, M.; Hubschwerlen, C.; Schmid, G. Bioorg.
Med. Chem. Lett. 2001, 11(18), 2537.
6. Romo, D.; Rzasa, R. M.; Shea, H. A.; Park, K.; Lanhgenhan, J. M.; Sun, L.; Akheizer,
A.; Liu, J. O. Am. Chem. Soc. 1998, 120, 12237.
pathway includes the full derivatization of trans-3-hydroxy-L-pro-
line, yielding monoprotected 2,6-diazabicyclo[3.2.0]heptane 13
after azidation/reduction, ring closure and removal of the Cbz-pro-
tecting group. Buchwald-Hartwig condensation with bromoben-
zene followed by N-deprotection gives access to the desired 6-
phenyl-2,6-diazabicyclo[3.2.0]heptane. The achieved synthetic
route has the advantage of affording orthogonally protected fused
azetidine 2, in which the two nitrogen atoms are chemically
addressable individually and selectively. This will allow the rapid
access to focused subsets of compounds containing the 2,6-diaza-
bicyclo[3.2.0]heptane core with different substituents on the two
nitrogen atoms.
7. (a) Muci, A. R.; Buchwald, S. L. Top. Curr. Chem. 2002, 219, 131; (b) Hartwig, J. F.
Acc. Chem. Res. 1998, 31, 852.
8. 4,5-Dihydro-pyrrole-1,2-dicarboxylic acid 1-tert-butyl ster 2-methyl ester (10): 1H
NMR (200 MHz, CDCl3) d 5.77 (t, J = 3.0 Hz, 1H), 3.95 (d, J = 8.6 Hz, 1H), 3.90 (d,
J = 8.8 Hz, 1H), 3.80 (s, 3H), 2.65 (dd, J = 3.0, J = 8.6 Hz, 1H), 2.60 (dd, J = 2.8,
J = 8.8 Hz, 1H), 1.47, 1.44 (2s, 9H).
9. The 2:1 ratio was established by analysis of 1H NMR spectrum. Azide 9 was not
isolated and reacted in the next reduction step without any purification.
10. 1-tert-Butyl 2-methyl 3-aminopyrrolidine-1,2-dicarboxylate (11a): Step 1: NaN3
(0.24 g, 3.71 mmol) was added to a solution of 8 (1.0 g, 3.10 mmol) in dry DMF
(12 mL). The mixture was warmed to 100 °C and stirred at that temperature for
7 h. After cooling to room temperature, EtOAc was added. The organic layer
was washed twice with saturated aqueous NH4Cl solution, then dried (Na2SO4),
filtered and concentrated under vacuum to afford a crude mixture of 9 and 10