2650
K. Katagiri et al. / Tetrahedron: Asymmetry 20 (2009) 2646–2650
Diederich, F. Cyclophanes; Royal Society of Chemistry: Cambridge, 1991.
Calixarene; (d) Vögtle, F. Cyclophane Chemistry: Synthesis, Structures and
Reactions; John Wiley & Sons: West Sussex, England, 1993; (e) Gleiter, R.;
Kratz, D. Acc. Chem. Res. 1993, 26, 311–318; (f) Nishimura, J.; Nakamura, Y.;
Hayashida, Y.; Kudo, T. Acc. Chem. Soc. 2000, 33, 679–686; (g)Modern
Cyclophane Chemistry; Gleiter, G., Hopf, H., Eds.; Wiley-VCH: Weinheim, 2004.
3. (a) Gutsche, C. D. Acc. Chem. Res. 1983, 16, 161–170; (b) Gutsche, C. D.; Rogers, J.
S.; Stewart, D.; See, K. A. Pure. Appl. Chem. 1990, 62, 485–491; (c) Shinkai, S.
Tetrahedron Lett. 1993, 49, 8933–8968; (d) Böhmer, V. Angew. Chem. Int. Ed.
1995, 34, 713–745.
4. (a) Pedersen, C. J. J. Am. Chem. Soc. 1967, 89, 7017–7036; (b) Artz, S. P.; Cram, D.
J. J. Am. Chem. Soc. 1984, 106, 2160–2171; (c) Gersch, B.; Lehn, J.-M.; Grell, E.
Tetrahedron Lett. 1996, 37, 2213–2216; (d) Gibson, H. W.; Yamaguchi, N.; Jones,
J. W. J. Am. Chem. Soc. 2003, 125, 3522–3533; (e) Wang, F.; Han, C.; He, C.; Zhou,
Q.; Zhang, J.; Wang, C.; Li, N.; Huang, F. J. Am. Chem. Soc. 2008, 10, 2119–2122.
5. (a) Bender, M. L.; Komiyama, M. Cyclodextrin Chemistry; Springer: Berlin, 1978;
(b) D’Souza, V. T.; Bender, M. L. Acc. Chem. Res. 1987, 20, 146–152; (c) Harada, A.
Acc. Chem. Res. 2001, 34, 456–464; (d) Harada, A.; Takashima, Y.; Yamaguchi, H.
Chem. Soc. Rev. 2009, 38, 875–882.
by preparative gel permeation chromatography using JAIGEL-2H
and -2.5H columns with chloroform as the mobile phase to give
5 as a white powder.
4.6.1. syn-Conformation
Mp >300 °C; 1H NMR (400 MHz, CDCl3): d 7.10 (dd, J = 6.0,
2.0 Hz, 6H), 6.74 (dd, J = 6.8, 2.0 Hz, 6H), 6.57 (d, J = 1.2 Hz, 3H),
6.36 (dd, J = 8.0, 1.6 Hz, 3H), 6.28 (d, J = 8.0 Hz, 3H), 5.28 (d,
J = 14.0 Hz, 3H), 4.19 (d, J = 14.0 Hz, 3H), 3.81–3.72 (m, 12H),
3.60–3.54 (m, 3H), 1.78–1.69 (m, 6H), 1.39–1.30 (m, 42H) and
0.90 (t, J = 6.8 Hz, 9H) ppm; 13C NMR (125 MHz, CDCl3): d 171.41,
158.98, 153.62, 137.84, 130.78, 130.67, 129.05, 119.11, 113.61,
109.36, 68.16, 55.17, 50.52, 31.91, 29.72, 29.54, 29.43, 29.37,
26.31, 22.69, and 14.10 ppm; FAB-MS m/z 1186.40.
6. (a) Peczuh, M. W.; Hamilton, A. D. Chem. Rev. 2000, 100, 2479–2494; (b)
Tsubaki, K.; Tanima, D.; Nuruzzaman, M.; Kusumoto, T.; Fuji, K.; Kawabata, T. J.
Org. Chem. 2005, 70, 4609–4616; (c) Folmer-Andersen, J. F.; Lynch, V. M.;
Anslyn, E. V. J. Am. Chem. Soc. 2005, 127, 7986–7987; (d) Borovkov, V. V.; Inoue,
Y. Org. Lett. 2006, 8, 2337–2340; (e) Rekharsky, M. V.; Yamamura, H.; Inoue, C.;
Kawai, M.; Osaka, I.; Arakawa, R.; Shiba, K.; Sato, A.; Ko, Y. H.; Selvapalam, N.;
Kim, K.; Inoue, Y. J. Am. Chem. Soc. 2006, 128, 14871–14880; (f) Ikeda, T.; Hirata,
O.; Takeuchi, M.; Shinkai, S. J. Am. Chem. Soc. 2006, 128, 16008–16009; (g) Bru,
M.; Alfonso, I.; Burguete, M. I.; Luis, S. V. Angew. Chem. Int. Ed. 2006, 45, 6155–
6159; (h) Heo, J.; Mirkin, C. A. Angew. Chem. Int. Ed. 2006, 45, 941–944; (i)
Miyaji, H.; Jong, S.-J.; Jeong, S.-D.; Yoon, D.-W.; Na, H.-K.; Hong, J.; Ham, S.;
Sessler, J. L.; Lee, C.-H. Angew. Chem. Int. Ed. 2007, 46, 2508–2511; (j)
Krishnamurthy, M.; Simon, K.; Orendt, A. M.; Beal, P. A. Angew. Chem. Int. Ed.
2007, 46, 7044–7047; (k) Abrahams, B. F.; Boughton, B. A.; Choy, H.; Clarke, O.;
Grannas, M. J.; Price, D. J.; Robson, R. Inorg. Chem. 2008, 47, 9797–9803.
7. (a) Wagler, T. R.; Fang, Y.; Burrows, C. J. J. Org. Chem. 1989, 54, 1584–1589; (b)
Koskinen, A. Pure. Appl. Chem. 1993, 65, 1465–1470; (c) Pye, P. J.; Rossen, K.;
Reamer, R. A.; Tsou, N. N.; Volante, R. P.; Reider, P. J. J. Am. Chem. Soc. 1997, 119,
6207–6208; (d) Li, Z.; Jablonski, C. Chem. Commun. 1999, 1531–1532; (e) Hu, X.;
He, J.; Chan, A. S. C.; Han, X.; Cheng, J.-P. Tetrahedron: Asymmetry 1999, 10,
2685–2689; (f) Matsumoto, K.; Saito, B.; Katsuki, T. Chem. Commun. 2007,
3619–3627; (g) Zhang, Q.; Takacs, J. M. Org. Lett. 2008, 10, 545–548; (h) Li, Y.;
Feng, Y.; He, Y.-M.; Chen, F.; Pan, J.; Fan, Q.-H. Tetrahedron Lett. 2008, 49, 2878–
2881.
4.6.2. anti-Conformation
Mp >300 °C; 1H NMR (400 MHz, CDCl3): d 7.10 (dd, J = 8.0,
2.0 Hz, 6H), 6.75 (dd, J = 7.2, 2.0 Hz, 6H), 6.56 (d, J = 1.2 Hz, 1H),
6.49 (dd, J = 9.4, 1.4 Hz, 2H), 6.47 (m, 3H), 6.24 (d, J = 7.6 Hz, 1H),
6.17 (d, J = 7.6 Hz, 1H), 5.36 (dd, J = 14.8, 3.6 Hz, 2H), 5.28 (d,
J = 13.6 Hz, 1H), 4.21 (d, J = 14.0 Hz, 1H), 4.15 (d, J = 8.4 Hz, 1H),
4.12 (d, J = 8.4 Hz, 1H), 3.79–3.74 (m, 15H), 1.73–1.71 (m, 6H),
1.41–1.24 (m, 36H) and 0.89 (t, J = 1.6 Hz, 9H) ppm; 13C NMR
(125 MHz, CDCl3):
d 171.29, 171.25, 158.96, 153.85, 153.81,
153.67, 137.88, 137.73, 131.30, 131.30, 130.82, 130.80, 130.77,
130.64, 130.57, 129.14, 129.12, 129.06, 129.01, 117.06, 116.91,
113.60, 113.57, 110.74, 109.37, 68.33, 68.14, 67.92, 55.14, 50.45,
50.33, 50.21, 29.63, 29.59, 29.55, 29.52, 29.46, 29.37, 29.32,
29.29, 29.27, 29.14, 29.11, 26.23, 26.07, 26.02, 22.66, and
14.08 ppm; FAB-MS m/z 1186.40.
5. Computational details
8. (a) Nugent, M. J.; Weigang, O. E., Jr. J. Am. Chem. Soc. 1969, 91, 4556–4558; (b)
Falk, H.; Reich-Rohrwig, P.; Schlögl, K. Tetrahedron 1970, 26, 511–528; (c)
Harada, N.; Soutome, T.; Nehira, T.; Uda, H.; Oi, S.; Okamura, A.; Miyano, S. J.
Am. Chem. Soc. 1993, 115, 7547–7548; (d) Furo, T.; Mori, T.; Wada, T.; Inoue, Y. J.
Am. Chem. Soc. 2005, 127, 8242–8243.
9. (a) Otsubo, T.; Kohda, T.; Misumi, S. Tetrahedron Lett. 1978, 19, 2507–2510; (b)
Otsubo, T.; Kohda, T.; Misuim, S. Bull. Chem. Soc. Jpn. 1980, 53, 512–517; (c)
Hayashida, O.; Matsuura, S.; Murakami, Y. Tetrahedron 1994, 50, 13601–13616;
(d) Shibahara, M.; Watanabe, M.; Iwanaga, T.; Matsumoto, T.; Ideta, K.;
Shinmyozu, T. J. Org. Chem. 2008, 73, 4433–4442; (e) Muranaka, A.; Shibahara,
M.; Watanabe, M.; Matsumoto, T.; Shinmyozu, T.; Kobayashi, N. J. Org. Chem.
2008, 73, 9125–9128.
10. (a) Azumaya, I.; Kagechika, H.; Yamaguchi, K.; Shudo, K. Tetrahedron Lett. 1996,
37, 5003–5006; (b) Azumaya, I.; Okamoto, T.; Takayanagi, H. Anal. Sci. 2001, 17,
1363–1364; (c) Azumaya, I.; Okamoto, T.; Imabeppu, F.; Takayanagi, H.
Heterocycles 2003, 60, 1419–1424; (d) Azumaya, I.; Okamoto, T.; Imabeppu,
F.; Takayanagi, H. Tetrahedron 2003, 59, 2325–2331; (e) Imabeppu, F.; Katagiri,
K.; Masu, H.; Kato, T.; Tominaga, M.; Therrien, B.; Takayanagi, H.; Kaji, E.;
Yamaguchi, K.; Kagechika, H.; Azumaya, I. Tetrahedron Lett. 2006, 47, 413–416;
(f) Masu, H.; Okamoto, T.; Kato, T.; Katagiri, K.; Tominaga, M.; Goda, H.;
Takayanagi, H.; Azumaya, I. Tetrahedron Lett. 2006, 47, 803–807.
All computations were performed using the GAUSSIAN 03 package
of programs.12 Geometry optimizations of cyclic benzamides were
executed with the DFT method employing the B3LYP hybrid func-
tional and 6-31G(d) basis sets. The C10H21O group was omitted and
replaced with a methoxyl group for these calculations. The TD-DFT
method was used to calculate the excitation energies, oscillator
strengths, and rotatory strengths at the B3LYP/6-31G(d) level. CD
spectra were generated using the rotatory strengths computed
with the dipole velocity form to which a Gaussian band-shape
was applied with 2500 cmꢁ1 as a half-height width.
Acknowledgments
Calculations were performed using the RIKEN Super Combined
Cluster (RSCC). The authors thank those administering these com-
putational facilities for the generous allocation of computer time.
11. (a) Bringmann, G.; Maksimenka, K.; Mutanyatta-Comar, J.; Knauer, M.; Bruhn,
T. Tetrahedron 2007, 63, 9810–9824; (b) Stephaens, P. J.; Devlin, F. J.; Schürch,
S.; Hulliger, J. Theor. Chem. Acc. 2008, 119, 19–28.
References
12. GAUSSIAN 03, Revision E.01; Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G.
E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.;
Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.;
Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.;
Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda,
Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.;
Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.;
Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.;
Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.;
Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.;
Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.;
Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.;
Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe,
M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A.;
Gaussian: Wallingford, CT, 2004.
1. (a) Hill, D. J.; Mio, M. J.; Prince, R. B.; Hughes, T. S.; Moore, J. S. Chem. Rev. 2001,
101, 3893–4012; (b) Albrecht, M. Chem. Rev. 2001, 101, 3457–3497; (c) Badjic´, J.
D.; Balzani, V.; Credi, A.; Silvi, S.; Stoddart, J. F. Science 2004, 303, 1845–1849;
(d) Huc, I. Eur. J. Org. Chem. 2004, 17–29; (e) Chang, K.-J.; Moon, D.; Lah, M. S.;
Jeong, K.-S. Angew. Chem. Int. Ed. 2005, 44, 7926–7929; (f) Lagona, J.;
Mukhopadhyay, P.; Chakrabarti, S.; Isaacs, L. Angew. Chem. Int. Ed. 2005, 44,
4844–4870; (g) Rebek, J., Jr. Angew. Chem. Int. Ed. 2005, 44, 2068–2078; (h)
Baxter, P. N. W.; Dali-Youcef, R. J. Org. Chem. 2005, 70, 4935–4953; (i) Aricó, F.;
Chang, T.; Cantrill, S. J.; Khan, S. I.; Stoddart, J. F. Chem. Eur. J. 2005, 11, 4655–
4666; (j) Li, Z.-T.; Hou, J.-L.; Li, C.; Yi, H.-P. Chem. Asian J. 2006, 1, 766–778; (k)
Cronin, L. Annu. Rep. Prog. Chem., Sect. A 2006, 102, 353–378; (l) Gibson, S. E.;
Lecci, C. Angew. Chem. Int. Ed. 2006, 45, 1364–1377; (m) Borisova, N. E.;
Reshetova, M. D.; Ustynyuk, Y. A. Chem. Rev. 2007, 107, 46–79.
2. (a)Cyclophanes; Keehn, P. M., Rosenfeld, S. M., Eds.; Academic Press: New York,
1983; Vols. 1 and 2, (b) Boekelheide, V. Acc. Chem. Res. 1980, 13, 65–70; (c)