S. Ghosh et al. / Inorganica Chimica Acta 362 (2009) 5175–5182
5181
Acknowledgements
N.B. thanks Sher-e-Bangla Agricultural University for leave to
work at Lund University. This research has been sponsored by
the Swedish Research Council (VR), the Royal Swedish Academy
of Sciences, the Swedish International Development Agency (SIDA)
and Ministry of Science and Information & Communication Tech-
nology, Government of the People’s Republic of Bangladesh.
References
[1] H. Topsøe, B.A. Clausen, F.E. Massoth, Hydrotreating Catalysis, Springer, Berlin,
1996.
[2] J.G. Speight (Ed.), Petroleum Chemistry and Refining, Taylor and Francis,
Washington, DC, 1998.
[3] R.J. Angelici, in: R.B. King (Ed.), Encyclopedia of Inorganic Chemistry, vol. 3,
Wiley, New York, 1994, pp. 1433–1443.
[4] (a) D.D. Whitehurst, T. Isoda, I. Mochida, Adv. Catal. 42 (1998) 345;
(b) M.J. Ledoux, O. Michaux, G. Agostini, P. Panissod, J. Catal. 102 (1986) 275.
[5] (a) B.C. Gates, J.R. Katzer, G.C.A. Schuit, Chemistry of Catalytic Processes,
McGraw-Hill, New York, 1979. pp. 390–447;
(b) G.D. Galpern, in: S. Gronowitz (Ed.), The Chemistry of Heterocyclic
Compounds, vol. 44, Part 1, Wiley, New York, 1985, pp. 325–351.
[6] (a) R.A. Sanchez-Delgado, J. Mol. Catal. 86 (1994) 287;
(b) R.J. Angelici, Polyhedron 16 (1997) 3073;
(c) C. Bianchini, A. Meli, J. Chem. Soc., Dalton Trans. (1996) 801.
[7] (a) R.D. Adams, O.-S. Kwon, J.L. Perrin, J. Organomet. Chem. 596 (2000) 102;
(b) R.D. Adams, X. Qu, Organometallics 14 (1995) 2238.
[8] (a) T.A. Pecoraro, R.R. Chianelli, J. Catal. 67 (1981) 430;
(b) R.R. Chianelli, Catal. Rev. 26 (1984) 361;
Fig. 5. Molecular structure of [Mn2(CO)5(PPhTh2)(l-PPhTh)(l- ,g
g1 5-C4H3S)] (9)
showing 50% probability thermal ellipsoids. Ring hydrogens are omitted for clarity.
Selected bond lengths (Å) and angles (°): Mn(1)–P(1) 2.2880(15), Mn(1)–P(2)
2.3471(15), Mn(2)–P(2) 2.241(2), Mn(2)–S(4) 2.295(4), Mn(1)–C(30) 2.080(10),
Mn(2)–C(30) 2.198(12), Mn(2)–C(31) 2.186(11), Mn(2)–C(32) 2.161(11), Mn(2)–
C(33) 2.119(11), C(1)–Mn(1)–C(3) 174.2(2), C(2)–Mn(1)–C(30) 169.5(4), C(2)–
Mn(1)–P(1) 97.98(18), C(30)–Mn(1)–P(1) 90.7(4), C(30)–Mn(1)–P(2) 75.9(4),
P(1)–Mn(1)–P(2) 165.69(6), C(1)–Mn(1)–P(2) 92.02(16), C(1)–Mn(1)–P(1)
92.03(16), C(1)–Mn(1)–C(30) 86.0(4), C(4)–Mn(2)–C(5) 89.3(7), C(4)–Mn(2)–P(2)
91.6(4), C(5)–Mn(2)–P(2) 97.3(4), P(2)–Mn(2)–S(4) 92.57(10), Mn(2)–P(2)–Mn(1)
98.28(7), Mn(1)–C(30)–Mn(2) 108.4(6), C(24)–P(2)–C(20) 95.8(9).
(c) C. Bianchini, A. Meli, Acc. Chem. Res. 31 (1998) 109;
(d) T.B. Rauchfuss, Prog. Inorg. Chem. 39 (1991) 259;
(e) D.A. Vicic, W.D. Jones, J. Am. Chem. Soc. 121 (1999) 7606.
[9] (a) R.J. Angelici, Acc. Chem. Res. 21 (1988) 387;
tion. The structure is related to that of 8 in with a PPhTh2 ligand
replacing an equatorial CO group on Mn(1) that lies trans to the
phosphido bridge. This structure is also very similar to that of
(b) N.N. Sauer, R.J. Angelici, J. Catal. 116 (1989) 11;
(c) J.J. Garcia, B.E. Mann, H. Adams, N.A. Bailey, P.M. Maitlis, J. Am. Chem. Soc.
117 (1995) 2179;
[Mn2(CO)5(PTh3)(l-PTh2)(l- ,g
g1 5-C4H3S)] (9) (P) (Chart 2) This
(d) R.J. Angelici, Organometallics 20 (2001) 1259. and references therein.
[10] (a) R.J. Angelici, Coord. Chem. Rev. 105 (1990) 61;
(b) R.J. Angelici, Coord. Chem. Rev. 206–207 (2000) 63.
[11] M. Brorson, J.D. King, K. Kiriakidou, F. Prestopino, E. Nordlander, in: P.
Braunstein, L.A. Oro, P.R. Raithby (Eds.), Metal Clusters in Chemistry, vol. 2,
Wiley-VCH, Weinheim, 1999, pp. 741–781. Chapter 2.6.
[12] (a) R.J. Angelici, Transition Metal Sulphides, NATO ASI Ser 3, vol. 60, 1998, p.
89;
complex is disordered in the crystal so that the two diastereomers
overlap in a 50/50 ratio. In addition the crystal is centric so that
there is an exact 50/50 ratio of the enantiomeric forms of each dia-
stereomer. The 31P-{1H} NMR spectrum displays three resonances
at d 51.4, À12.9 and À21.6 in a 2:1:1 ratio. The FAB mass spectrum
exhibits the parent molecular ion at m/z 798 together with ions
due to successive loss of five carbonyl ligands which is consistent
with the solid-state structue.
(b) C. Bianchini, A. Meli, Transition Metal Sulphides, NATO ASI Ser. 3, vol. 60,
1998, p. 129;
(c) R.J. Angelici, Bull. Soc. Chim. Belg. 104 (1995) 265.
[13] (a) P.A. Vecchi, A. Ellern, R.J. Anjelici, Organometallics 24 (2005) 2168;
(b) P.A. Vecchi, A. Ellern, R.J. Anjelici, J. Am. Chem. Soc. 125 (2003) 2064.
[14] (a) H. Li, K. Yu, E.J. Watson, K.L. Virkaitis, J.S. D’Acchioli, G.B. Carpenter, D.A.
Sweigart, Organometallics 21 (2002) 1262;
(b) A.J. Hernández-Maldonado, R.T. Yang, J. Am. Chem. Soc. 126 (2004) 992.
[15] (a) M.A. Reynolds, I.A. Guzei, R.J. Angelici, J. Am. Chem. Soc. 124 (2002) 1689;
(b) M.A. Reynolds, I.A. Guzei, R.J. Angelici, Organometallics 20 (2001) 1071.
[16] (a) D.G. Churchill, B.M. Bridgewater, G. Parkin, J. Am. Chem. Soc. 122 (2000)
178;
4. Conclusion
In summary, we have demonstrated the reactivity of PPhTh2 to-
wards [Re2(CO)10Àx(NCMe)x] (x = 0, 1, 2) and [Mn2(CO)10]. Under
mild conditions, reactions with the lightly stabilized rhenium com-
plexes give simple substitution products, but carbon–phosphorus
bond cleavage is observed under more forcing conditions. Reaction
of [Mn2(CO)10] with PPhTh2 affords three dimanganese complexes
of which compounds 8 and 9 have been obtained as a result of car-
bon–phosphorus bond cleavage and each contains a bridging thie-
(b) M.S. Palmer, S. Harris, Organometallics 19 (2000) 2114;
(c) J. Torres-Nieto, A. Arévalo, P. García-Gutiérrez, A. Acosta-Ramírez, J.J.
García, Organometallics 23 (2004) 4534.
[17] (a) K. Bieger, F. Estevan, P. Lahuerta, J. Lloret, J. Pérez-Prieto, M. Sanaú, N.
Siguero, S.-E. Stiriba, Organometallics 22 (2003) 1799;
(b) J. Lloret, F. Estevan, P. Lahuerta, P. Hirva, J. Pérez-Prieto, M. Sanaú,
Organometallics 25 (2006) 3156.
[18] A.J. Deeming, S.N. Jayasuriya, A.J. Arce, Y.D. Sanctis, Organometallics 15 (1996)
786.
[19] J.D. King, M. Monari, E. Nordlander, J. Organomet. Chem. 573 (1999) 272.
[20] N.K. Kiriakidou Kazemifar, M.J. Stchedroff, M.A. Mottalib, S. Selva, M. Monari, E.
Nordlander, Eur. J. Inorg. Chem. (2006) 2058.
[21] S.P. Tunik, I.G. Koshevoy, A.J. Poë, D.H. Farrar, E. Nordlander, M. Haukka, P.A.
Pakkanen, J. Chem. Soc., Dalton Trans. (2003) 2457.
nyl ligand bonded to one manganese atom in a
g
5-fashion. This
observation is similar to that reported for PPh2Th [25] and PTh3
[27]. We note that in all instances it is the phosphorus–thienyl
bond that is cleaved.
[22] N.K. Kiriakidou Kazemifar, M.J. Stchedroff, M.H. Johannson, M.A. Mottalib, M.
Monari, E. Nordlander, Unpublished results.
[23] M.A. Mottalib, S.E. Kabir, D.A. Tocher, A.J. Deeming, E. Nordlander, J.
Organomet. Chem. 692 (2007) 5007.
Supplementary material
CCDC 667828, 694818, 667827, 634409 and 634410 contain the
supplementary crystallographic data for 3, 4, 6, 8 and 9, respec-
tively. These data can be obtained free of charge from The Cam-
[24] U. Bodensieck, H. Varenkamp, G. Rheinwald, H. Stoeckli-Evans, J. Organomet.
Chem. 488 (1995) 85.
[25] A.J. Deeming, M.K. Shinhmar, A.J. Arce, Y.D. Sanctis, J. Chem. Soc., Dalton Trans.
(1999) 1153.
[26] M.N. Uddin, N. Begum, M.R. Hassan, G. Hogarth, S.E. Kabir, M.A. Miah, E.
Nordlander, D.A. Tocher, J. Chem. Soc., Dalton Trans. (2008) 6219.