ChemComm
Page 4 of 5
COMMUNICATION
Journal Name
effective strategy for designing inhibitors of racemases and
epimerases with capacious active sites. This rational approach
offers an alternative to the well-established strategy of using
β-halo compounds43,44 to generate suicide substrates of
racemases and epimerases catalyzing formation of en-
ol/enolate intermediates, or to the strategies of designing an
inhibitor based on the structure of the substrate(s), product(s),
intermediate(s), or transition state(s) of enzyme-catalyzed
reactions. The inhibitors described in the present work may
furnish tools for studying cholesterol ester metabolism in M.
tuberculosis,45 or lead compounds for the development of
AMACR inhibitors directed against PCa. The additional acyl-
like chain on such gem-disubstituted inhibitors may endow the
inhibitor with specificity, obviating its recognition by other
fatty acyl-CoA-metabolizing enzymes. Of course, in vivo stud-
ies will require structural alterations and prodrug strategies to
circumvent hydrolysis of the thioester and the lack of cell
permeability arising from the CoA moiety, respectively.46,47
Alternatively, the reasonable binding affinity exhibited by gem-
disubstituted diaryl acids such as 3c may offer a means of
overcoming the need for incorporation of the CoA moiety.
This work was supported by a Discovery Grant from the
Natural Sciences and Engineering Research Council (NSERC) of
Canada (S.L.B.), a grant from the Prostate Cancer Research
Foundation (S.L.B.), and a Cancer Research Training Program
studentship award (M.K.) from the Beatrice Hunter Cancer
Research Institute. We thank Dr. Mike Lumsden (NMR-3) for
his assistance in conducting NMR experiments.
DOI: 10.1039/C5CC08096G
2009, 7, 543-552.
19 W. Schmitz, R. Fingerhut and E. Conzelmann, Eur. J. Biochem., 1994,
222, 313-323.
20 D. W. Russell, Annu. Rev. Biochem., 2003, 72, 137-174.
21 C. S. Chen, W. R. Shieh, P. H. Lu, S. Harriman and C. Y. Chen, Biochim.
Biophys. Acta., 1991, 1078, 411-417.
22 W.-R. Shieh and C.-S. Chen, J. Biol. Chem., 1993, 268, 3487-3493.
23 K. Savolainen, P. Bhaumik, W. Schmitz, T. J. Kotti, E. Conzelmann, R.
K. Wierenga and J. K. Hiltunen, J. Biol. Chem., 2005, 280, 12611-
12620.
24 W. Schmitz, C. Albers, R. Fingerhut and E. Conzelmann, Eur. J.
Biochem., 1995, 231, 815-822.
25 S. Sharma, P. Bhaumik, W. Schmitz, R. Venkatesan, J. K. Hiltunen, E.
Conzelmann, A. H. Juffer and R. K. Wierenga, J. Phys. Chem. B, 2012,
116, 3619-3629.
26 S. Patai and S. Dayagi, J. Chem. Soc., 1958, 3058-3061.
27 D. Ouazia and S. L. Bearne, Anal. Biochem., 2010, 398, 45-51.
28 F. A. Sattar, D. J. Darley, F. Politano, T. J. Woodman, M. D. Threadgill
and M. D. Lloyd, Chem. Commun., 2010, 46, 3348-3350.
29 B. A. Wilson, H. Wang, B. A. Nacev, R. C. Mease, J. O. Liu, M. G.
Pomper and W. B. Isaacs, Mol. Cancer Ther., 2011, 10, 825-838.
30 I. H. Segel, Enzyme Kinetics, John Wiley and Sons, Inc., New York,
1975.
31 A. Nassar, M. B. Amin, D. G. Sexton and C. Cohen, Appl.
Immunohistochem. Mol. Morphol., 2005, 13, 252-255.
32 M. A. Rubin, M. Zhou, S. M. Dhanasekaran, S. Varambally, T. R.
Barrette, M. G. Sanda, K. J. Pienta, D. Ghosh and A. M. Chinnaiyan,
JAMA, 2002, 287, 1662-1670.
33 Kumar-Sinha, R. B. Shah, B. Laxman, S. A. Tomlins, J. Harwood, W.
Schmitz, E. Conzelmann, M. G. Sanda, J. T. Wei, M. A. Rubin and A.
M. Chinnaiyan, Am. J. Pathol., 2004, 164, 787-793.
34 J. Luo, S. Zha, G. W.R., T. A. Dunn, J. L. Hicks, C. J. Bennett, C. M.
Ewing, E. A. Platz, S. Ferdinandusse, R. J. Wanders, J. M. Trent, W. B.
Isaacs and A. M. De Marzo, Cancer Res., 2002, 62, 2220-2226.
35 Z. Jiang, B. A. Woda, C. L. Wu and X. J. Yang, Am. J. Clin. Pathol.,
2004, 122, 275-289.
36 S. Zha, S. Ferdinandusse, S. Denis, R. J. Wanders, C. M. Ewing, J. Luo,
A. M. De Marzo and W. B. Isaacs, Cancer Res., 2003, 63, 7365-7376.
37 M. D. Lloyd, D. J. Darley, A. S. Wierzbicki and M. D. Threadgill, FEBS
J., 2008, 275, 1089-1102.
38 K. Takahara, H. Azuma, T. Sakamoto, S. Kiyama, T. Inamoto, N. Ibuki,
T. Nishida, H. Nomi, T. Ubai, N. Segawa and Y. Katsuoka, Anticancer
Res., 2009, 29, 2497-2505.
39 M. D. Lloyd, M. Yevglevskis, G. L. Lee, P. J. Wood, M. D. Threadgill
and T. J. Woodman, Prog. Lipid Res., 2013, 52, 220-230.
40 M. Yevglevskis, G. L. Lee, M. D. Threadgill, T. J. Woodman and M. D.
Lloyd, Chem. Commun., 2014, 50, 14164-14166.
41 A. Morgenroth, E. A. Urusova, C. Dinger, E. Al-Momani, T. Kull, G.
Glatting, H. Frauendorf, O. Jahn, F. M. Mottaghy, S. N. Reske and B.
D. Zlatopolskiy, Chem. Eur. J., 2011, 17, 10144-10150.
42 A. J. Carnell, R. Kirk, M. Smith, S. McKenna, L. Y. Lian and R. Gibson,
ChemMedChem, 2013, 8, 1643-1647.
Notes and references
1
A. Radzicka and R. Wolfenden, Methods Enzymol., 1995, 249, 284-
312.
2
R. A. Copeland, Evaluation of enzyme inhibitors in drug discovery: A
guide for medicinal chemists and pharmacologists, John Wiley and
Sons, Inc., New York, 2013.
3
4
V. L. Schramm, ACS Chem. Biol., 2013, 8, 71-81.
A. D. Lietzan, M. Nagar, E. A. Pellmann, J. R. Bourque, S. L. Bearne
and M. St. Maurice, Biochemistry, 2012, 51, 1160-1170.
F. Siddiqi, J. R. Bourque, H. Jiang, M. Gardner, M. St. Maurice, C.
Blouin and S. L. Bearne, Biochemistry, 2005, 44, 9013-9021.
M. St. Maurice and S. L. Bearne, Biochemistry, 2000, 39, 13324-
13335.
M. Harty, M. Nagar, L. Atkinson, C. M. LeGay, D. J. Derksen and S. L.
Bearne, Bioorg. Med. Chem. Lett., 2013, 23, 390-393.
M. Pal and S. L. Bearne, Bioorg. Med. Chem. Lett., 2014, 24, 1432-
1436.
5
6
7
8
9
A. D. Broom, J. Med. Chem., 1989, 32, 2-7.
43 A. J. Carnell, I. Hale, S. Denis, R. J. Wanders, W. B. Isaacs, B. A. Wilson
and S. Ferdinandusse, J. Med. Chem., 2007, 50, 2700-2707.
44 A. Fersht, Structure and Mechanism in Protein Science, W.H.
Freeman and Co., New York, 1999.
45 R. Lu, W. Schmitz and N. S. Sampson, Biochemistry, 2015, 54, 5669.
46 Y. Hwang, S. Ganguly, A. K. Ho, D. C. Klein and P. A. Cole, Bioorg.
Med. Chem., 2007, 15, 2147-2155.
10 M. I. Page and W. P. Jencks, Proc. Natl. Acad. Sci. USA, 1971, 68,
1678-1683.
11 J. A. Landro, J. A. Gerlt, J. W. Kozarich, C. W. Koo, V. J. Shah, G. L.
Kenyon, D. J. Neidhart, S. Fujita and G. A. Petsko, Biochemistry, 1994,
33, 635-643.
12 K. R. Hanson, Arch. Biochem. Biophys., 1981, 211, 575-588.
13 A. D. Mesecar and D. E. Koshland, Jr., Nature, 2000, 403, 614-615.
14 M. St. Maurice and S. L. Bearne, Biochemistry, 2004, 43, 2524-2532.
15 M. Nagar, A. D. Lietzan, M. St. Maurice and S. L. Bearne,
Biochemistry, 2014, 53, 1169-1178.
47 K. Vong, I. S. Tam, X. Yan and K. Auclair, ACS Chem. Biol., 2012, 7,
470-475.
16 M. Nagar, A. Narmandakh, Y. Khalak and S. L. Bearne, Biochemistry,
2011, 50, 8846-8852.
17 P. Bhaumik, W. Schmitz, A. Hassinen, J. K. Hiltunen, E. Conzelmann
and R. K. Wierenga, J. Mol. Biol., 2007, 367, 1145-1161.
4 | Chem. Commun., 2015, 51, 1-3
This journal is © The Royal Society of Chemistry 2015
Please do not adjust margins