10616
C. Ribes et al. / Tetrahedron 65 (2009) 10612–10616
4. Iminosugars. From Synthesis to Therapeutic Applications; Compain, P., Martin,
O. R., Eds.; John Wiley and Sons: Chichester, UK, 2007.
subjected to column chromatography on silica gel (elution with
CHCl3/MeOH/NH4OH, from 95:4:1 to 70:29:1). The eluted material
was subsequently purified in an ion-exchange column (Dowex
5Wx4-400 Aldrich, acidified with 0.5 M HCl). Elution was per-
formed first with distilled water (50 mL) and then with 1 M aq
ammonia (until elution of the product). This afforded 6 (13 mg,
5. (a) Jacob, G. S. Curr. Opin. Struct. Biol. 1995, 5, 605–611; (b) Ganem, B. Acc. Chem.
Res. 1996, 29, 340–347; (c) Sears, P.; Wong, C.-H. Chem. Commun. 1998,
1161–1170; (d) Compain, P.; Martin, O. R. Bioorg. Med. Chem. 2001, 9,
3077–3092; (e) Asano, N. Glycobiology 2003, 13, 93R–104R; (f) Borges de Melo,
E.; da Silveira Gomes, A.; Carvalho, I. Tetrahedron 2006, 62, 10277–10302.
6. Cox, T. M.; Platt, F. M.; Aerts, J. M. F. G., in Ref. 4, pp 295–326.
75%): amorphous solid; [
a]
D þ29.7 (c 0.3, CHCl3), lit.8d
[
a
]
D þ28.8 (c
7. For various methods of synthesis of pyrrolidines (including other heterocyclic
systems), see: (a) Look, G. C.; Fotsch, C. H.; Wong, C.-H. Acc. Chem. Res. 1993, 26,
182–190; (b) Pichon, M.; Figade`re, B. Tetrahedron: Asymmetry 1996, 7, 927–964;
(c) Enders, D.; Thiebes, C. Pure Appl. Chem. 2001, 73, 573–578; (d) Yoda, H. Curr.
Org. Chem. 2002, 6, 223–243; (e) Cipolla, L.; La Ferla, B.; Nicotra, F. Curr. Top.
Med. Chem. 2003, 3, 485–511; (f) El-Ashry, E. H.; El-Nemr, A. Carbohydr. Res.
2003, 338, 2265–2290; (g) Merino, P. Targets Heterocycl. Chem. 2003, 7,
140–156; (h) Pyne, S. G.; Davis, A. S.; Gates, N. J.; Hartley, J. P.; Lindsay, K. B.;
Machan, T.; Tang, M. Synlett 2004, 2670–2680; (i) Popowycz, F.; Gerber-Lem-
aire, S.; Schu¨tz, C.; Vogel, P. Helv. Chim. Acta 2004, 87, 800–810; (j) Cren, S.;
Gurcha, S. S.; Blake, A. J.; Besra, G. S.; Thomas, N. R. Org. Biomol. Chem. 2004, 2,
2418–2420; (k) Ayad, T.; Genisson, Y.; Baltas, M. Curr. Org. Chem. 2004, 8,
1211–1233; (l) Izquierdo, I.; Plaza, M. T.; Rodrı´guez, M.; Franco, F.; Martos, A.
Tetrahedron 2005, 61, 11697–11704; (m) Brinner, K. M.; Ellman, J. A. Org. Biomol.
Chem. 2005, 3, 2109–2113; (n) Ballini, R.; Bosica, G.; Fiorini, D.; Palmieri, A.;
Petrini, M. Chem. Rev. 2005, 105, 933–971; (o) Huang, P.-Q. Synlett 2006,
1133–1149; (p) Bellina, F.; Rossi, R. Tetrahedron 2006, 62, 7213–7256; (q) Pan-
dey, G.; Banerjee, P.; Gadre, S. R. Chem. Rev. 2006, 106, 4484–4517; (r) Murruzzu,
C.; Riera, A. Tetrahedron: Asymmetry 2007, 18, 149–154; (s) Håkansson, A. E.; van
Ameijde, J.; Guglielmini, L.; Horne, G.; Nash, R. J.; Evinson, E. L.; Kato, A.; Fleet,
G. W. J. Tetrahedron: Asymmetry 2007, 18, 282–289; (t) Martin, O. Ann. Pharm. Fr.
2007, 65, 5–13; (u) Minatti, A.; Mun˜iz, K. Chem. Soc. Rev. 2007, 36, 1142–1152; (v)
Wolfe, J. P. Eur. J. Org. Chem. 2007, 571–582.
8. (a) Shibano, M.; Tsukamoto, D.; Kusano, G. Heterocycles 2002, 57, 1539–1553;
(b) Tsukamoto, D.; Shibano, M.; Kusano, G. Nat. Med. 2003, 57, 68–72; (c) for
broussonetine C, see: Shibano, M.; Kitagawa, S.; Kusano, G. Chem. Pharm. Bull.
1997, 45, 505–508; (d) for broussonetines O and P, see: Shibano, M.; Tsukamoto,
D.; Fujimoto, R.; Masui, Y.; Sugimoto, H.; Kusano, G. Chem. Pharm. Bull. 2000, 48,
1281–1285.
9. For other bioactive compounds from the genus Broussonetia, see: Lee, D.;
Kinghorn, A. D. In Studies in Natural Products Chemistry; Atta-ur-Rahman, Ed.;
Elsevier Science B.V: 2003; Vol. 28; Part I, pp 3–33.
10. (a) Yoda, H.; Shimojo, T.; Takabe, K. Tetrahedron Lett. 1999, 40, 1335–1336; (b)
Perlmutter, P.; Vounatsos, F. J. Carbohydr. Chem. 2003, 22, 719–732; (c) Trost,
B. M.; Horne, D. B.; Woltering, M. J. Chem.dEur. J. 2006, 12, 6607–6620; (d) for
the synthesis of the side chain fragment of broussonetine H, see: Brimble, M.
A.; Parka, J. H.; Taylor, C. M. Tetrahedron 2003, 59, 5861–5868.
0.96, MeOH); 1H NMR (pyridine-d5)
d 5.55–5.45 (2H, m), 4.90 (1H,
br t, Jw6.5 Hz), 4.66 (1H, br t, Jw6.5 Hz), 4.50–4.40 (2H, m), 4.26
(1H, m), 4.10 (1H, m), 3.85 (2H, t, J¼6.5 Hz), 2.60–2.50 (2H, m), 2.45
(2H, t, J¼7.5 Hz), 2.40 (2H, m), 2.33 (2H, t, J¼7.5 Hz), 1.95–1.80 (4H,
br m), 1.75 (2H, m), 1.60–1.50 (2H, m), 1.40–1.20 (2H, br m), five
exchangeable protons (4OH, NH) were not detected under these
conditions; 13C NMR (pyridine-d5)
d 210.5 (C), 131.7, 129.0, 80.6,
76.4, 65.2, 61.7 (CH), 62.2, 59.5, 42.5, 42.4, 33.0, 32.5, 31.9, 29.7, 29.0,
23.5, 21.0 (CH2); HR FABMS m/z 344.2443 (MþHþ), calcd for
C18H34NO5 344.2437. The identity of the natural and the synthetic
sample was secured by comparison with an authentic sample.
Acknowledgements
Financial support has been granted by the Spanish Ministry of
Science and Technology (projects CTQ2005-06688-C02-01 and
CTQ2005-06688-C02-02), by the BANCAJA-UJI foundation (projects
P1-1A-2005-15 and P1-1B-2005-30) and by the Conselleria de
´
Educacion, Ciencia y Empresa de la Generalitat Valenciana (project
ACOMP07/023). C.R. thanks the Spanish Ministry of Education and
Science for a predoctoral fellowship (FPU program). The authors
further thank Professor M. Shibano, from the Osaka University of
Pharmaceutical Sciences, Japan, for the kind sending of authentic
samples of broussonetines and for advice related to the purification
of these compounds.
Supplementary data
11. Ribes, C.; Falomir, E.; Murga, J.; Carda, M.; Marco, J. A. Org. Biomol. Chem. 2009, 7,
1355–1360.
Supplementary data contain the graphical NMR spectra. Sup-
plementary data associated with this article can be found in online
12. Fukuda, Y.; Shindo, M.; Shishido, K. Org. Lett. 2003, 5, 749–751.
13. (a) Connon, S. J.; Blechert, S. Angew. Chem., Int. Ed. 2003, 42, 1900–1923; (b)
Chatterjee, A. K.; Choi, T.-L.; Sanders, D. P.; Grubbs, R. H. J. Am. Chem. Soc. 2003,
125, 11360–11370; (c) Vernall, A. J.; Abell, A. D. Aldrichimica Acta 2003, 36,
93–105; (d) Schrodi, Y.; Pederson, R. L. Aldrichimica Acta 2007, 40, 45–52.
14. Homodimer 14 could be recycled to 12 by subjecting it to CM with pyrrolidine 7
under the same conditions as above. In contrast, homodimer 13 did not give 12
when allowed to react with 9. In relation to such issues, see Ref. 13b and:
Goldup, S. M.; Pilkington, C. J.; White, A. J. P.; Burton, A.; Barrett, A. G. M. J. Org.
Chem. 2006, 71, 6185–6191.
15. Greene, T. W.; Wuts, P. G. M. Protective Groups in Organic Synthesis, 3rd ed.; John
Wiley: New York, NY, 1999; p 142.
16. Hydrogenation in a neutral medium caused saturation of the olefinic bond but
no hydrogenolysis of the benzyl groups.
17. Greene, T. W.; Wuts, P. G. M. Protective Groups in Organic Synthesis, 3rd ed.; John
Wiley: New York, NY, 1999; p 82.
18. (a) Wormald, M. R.; Nash, R. J.; Hrnciar, P.; White, J. D.; Molyneux, R. J.; Fleet,
G. W. J. Tetrahedron: Asymmetry 1998, 9, 2549–2558; (b) Donohoe, T. J.; Sintim,
H. O.; Hollinshead, J. J. Org. Chem. 2005, 70, 7297–7304; (c) Magolan, J.; Car-
son, C. A.; Kerr, M. A. Org. Lett. 2008, 10, 1437–1440.
References and notes
1. For reviews on various alkaloidal types, including pyrrolidines, see: (a) Plun-
´
kett, A. O. Nat. Prod. Rep. 1994, 11, 581–590; (b) OHagan, D. Nat. Prod. Rep. 1997,
14, 637–651; (c) O’Hagan, D. Nat. Prod. Rep. 2000, 17, 435–446; (d) Watson, A. A.;
Fleet, G. W. J.; Asano, N.; Molyneux, R. J.; Nash, R. J. Phytochemistry 2001, 56,
265–295; (e) Dembitsky, V. M. Lipids 2005, 40, 1081–1105.
2. Daly, J. W.; Spande, T. F.; Garraffo, H. M. J. Nat. Prod. 2005, 68, 1556–1575.
3. (a) Evans, S. V.; Fellows, L. E.; Shing, T. K. M.; Fleet, G. W. J. Phytochemistry 1985,
24, 1953–1955; (b) Molyneux, R. J.; Pan, Y. T.; Tropea, J. E.; Elbein, A. D.; Lawyer,
C. H.; Hughes, D. J.; Fleet, G. W. J. J. Nat. Prod. 1993, 56, 1356–1364; (c) Tsuchiya,
K.; Kobayashi, S.; Kurokawa, T.; Nakagawa, T.; Shimada, N. J. Antibiot. 1995, 48,
630–634; (d) Asano, N. Curr. Top. Med. Chem. 2003, 3, 471–484; (e) Greimel, P.;
Spreitz, J.; Stu¨tz, A. E.; Wrodnigg, T. M. Curr. Top. Med. Chem. 2003, 3, 513–523;
(f) Compain, P.; Martin, O. R. Curr. Top. Med. Chem. 2003, 3, 541–560; (g) Butters,
T. D.; Dwek, R. A.; Platt, F. M. Curr. Top. Med. Chem. 2003, 3, 561–574.