306
J IRAN CHEM SOC (2012) 9:297–306
6. M.A. Tovmasyan, I.V. Bulgarovskaya, V.M. Vozzhennikov, Zh.
Fiz. Khim. 58, 1428 (1984). (in Russian)
7. A. Ahmedova, V. Mantareva, V. Enchev, M. Mitewa, Int.
J. Cosm. Sci. 24, 103 (2002)
8. C. Bratschkov, S. Minchev, I. Schopov, Polymer 35, 1549 (1994)
9. V. Gulbinas, G. Kodis, S. Jursenas, L. Valkunas, A. Gruodis, J.C.
Mialocq, S. Pommeret, T. Gustavsson, J. Phys. Chem. A 103,
3969 (1999)
10. S. Jursenas, A. Gruodis, G. Kodis, M. Chachisvilis, V. Gulbinas,
E.A. Silinsh, J. Phys. Chem. B 102, 1086 (1998)
11. V. Enchev, S. Bakalova, G. Ivanova, N. Stoyanov, Chem. Phys.
Lett. 314, 234 (1999)
12. V. Enchev, I. Abrahams, S. Angelova, G. Ivanova, J. Mol. Str.
(THEOCHEM) 719, 169 (2005)
13. P.N. Krishnan, L.A. Burke, J.O. Jensen, J. Mol. Str. (THEO-
CHEM) 305, 9 (1994)
14. M.A. Akl, Microchem. J. 75, 199 (2003)
15. S.E. Ghazy, Anal. Sci. 11, 33 (1995)
16. D. Zacharova-Kalavska, A. Perjessy, I. Zelensky, Coll. Czech.
Chem. Commun. 35, 225 (1970)
17. N. Wang, Z.H. Si, W. Jiang, Spectrochim. Acta Part A 53, 8.29
(1997)
18. Z.K. Si, W. Jiang, Y.J. Ding, J.T. Hu, Fresen. J. Anal. Chem. 360,
731 (1998)
19. E.E.S. Teotonio, H.F. Brito, H. Viertler, W.M. Faustino, O.L.
Malta, G.F. de Sa’, M.C.F.C. Felinto, R.H.A. Santos, M. Cre-
mona, Polyhedron 25, 3488 (2006)
20. A. Ahmedova, O. Cador, L. Sorace, S. Ciattini, D. Gatteschi, M.
Mitewa, J. Coord. Chem. 61, 3879 (2008)
21. A. Ahmedova, V. Rusanov, A. Hazell, J. Wolny, G. Gochev,
A.X. Trautwein, M. Mitewa, Inorg. Chim. Acta. 359, 3123 (2006)
22. V. Enchev, A. Ahmedova, G. Ivanova, I. Wawer, N. Stoyanov,
M. Mitewa, J. Mol. Str. 595, 67 (2001)
23. A. Ahmedova, P. Marinova, S. Ciattini, N. Stoyanov, M.
Springborg, M. Mitewa, Struct. Chem. 20, 101 (2009)
24. A. Ahmedova, V. Atanasov, P. Marinova, N. Stoyanov, M.
Mitewa, Cent. Eur. J. Chem. 7, 429 (2009)
25. A. Ahmedova, N. Burdzhiev, S. Ciattini, E. Stanoeva, M. Mite-
wa, C.R. Chimie 13, 1269 (2010)
fragment, such as p-methoxy and p-dimethylamino group
in 6 and 7, respectively, show significant bathochromic
shift in the absorption spectra as compared with compound
1 (see Table 4) and smaller Stokes shift in their fluores-
cence spectra. This is in accordance with the expected
effect of degree of p-electron conjugation between the
electron-acceptor part of the molecule (the 1,3-indandione
fragment) and the electron donating part. The photosta-
bility data for compounds 1 and 5 show that they are less
photostable than 2AID; the maximum loss of optical den-
sity for 5 is estimated to 23% after 2 h of irradiation.
Although less photostable than 2AID, it is still comparable
with the photostability data for an widely used sunscreen
agent, i.e., octyl 4-methoxycinnamate (Parsol MCX) [7].
From structural point of view, the 2AID molecule pos-
sesses strong intramolecular hydrogen bond and a possi-
bility for intramolecular proton transfer, whereas the octyl
methoxycinnamate offers a possibility for cis–trans isom-
erization of the C=C double bond present in the molecule.
Both intramolecular processes can be induced by UV
irradiation and, if fast enough and reversible, they can give
rise to a good photostability of the compound avoiding
photodegradation. Our previous photostability studies [7]
showed that fast and reversible proton transfer, as for 2AID
and benzophenone-3, is much more efficient deactivation
process leading to higher photostability than the cis–trans
isomerization, which is the case for octyl methoxycinna-
mate showing 27% loss of optical density after 2 h of UV-
irradiation. The molecular structure of compounds 1–7
contain both intramolecular hydrogen bonding and flexible
C–C bonds rendering possibility for intramolecular proton
transfer and cis–trans isomerization. According to the
photostability and the fluorescence data of compounds 1–7,
the former process most probably does not occur.
ˇ
´
ˇ
26. A. Ahmedova, G. Pavlovic, D. Zhiryakova, D. Sisak, N. Stoya-
nov, M. Springborg, M. Mitewa, J. Mol. Str. 981, 10 (2010)
27. N.S. Magomedova, Z.V. Zvonkova, L.S. Geyta, E.M. Smel-
yanskaya, S.L. Ginsburg, Zh. Strukt. Khim. 21, 131 (1980). (in
Russian)
Acknowledgments Financial support by the Ministry of Science
and Technology of the Republic of Croatia (Grant No. 098-1191344-
2943) and Plovdiv University (Grant No. NI-2011-HF-007) are
gratefully acknowledged.
28. Oxford Diffraction Ltd., Xcalibur CCD system, CrysAlis Software
system, Version 1.171.32.29. (Abingdon, Oxfordshire, 2008)
29. G.M. Sheldrick, Acta Cryst. A64, 112 (2008)
30. L.J. Farrugia, J. Appl. Cryst. 32, 837 (1999)
31. L.J. Farrugia, J. Appl. Cryst. 30, 565 (1997)
32. L. Spek, J. Appl. Cryst. 36, 7 (2003)
33. C.F. Macrae, I.J. Bruno, J.A. Chisholm, P.R. Edgington, P.
McCabe, E. Pidcock, L. Rodriguez-Monge, R. Taylor, J. van de
Streek, P.A. Wood, J. Appl. Cryst. 41, 466 (2008)
34. E.S. Afsah, F.A.K. Amer, H. Etman, Zeits. Naturforsch. Sect. B
34, 502 (1979)
35. G. Gilli, F. Bellucci, V. Ferretti, V. Bertolasi, J. Am. Chem. Soc.
11, 1023 (1989)
36. P. Gilli, V. Bertolasi, V. Feretti, G. Gilli, J. Am. Chem. Soc. 116,
909 (1994)
37. F.H. Allen, O. Kennard, D.G. Watson, L. Brammer, A.G. Orpen,
R. Taylor, J. Chem. Soc. Perkin. Trans. II, S1 (1987)
38. I. Csoregh, R. Norrestam, Acta. Cryst. B 32, 2450 (1976)
39. J.D. Korp, I. Bernal, T.L. Lemke, Acta. Cryst. B 36, 426 (1980)
40. J.G. Garcia, J.D. Enas, Acta. Cryst. C49, 1823 (1993)
References
1. R. Karpicz, V. Getautis, K. Kazlauskas, S. Jursenas, V. Gulbinas,
Chem. Phys. 351, 147 (2008)
2. H. Schwartz, R. Mazor, V. Khodorkovsky, L. Shapiro, J.T. Klug,
E. Kovalev, G. Meshulam, G. Berkovic, Z. Kotler, S. Efrima, J.
Phys. Chem. B 105, 5914 (2001)
3. S. Jursenas, V. Gulbinas, Z. Kuprionis, R. Kananavicius, G.
Kodis, T. Gustavsson, J.C. Mialocq, L. Valkunas, Synth. Met.
109, 169 (2000)
4. M. Utinans, O. Neilands, Adv. Mat. Opt. Electr. 9, 19 (1999)
5. S. Jursenas, V. Gulbinas, A. Gruodis, G. Kodis, V. Kovalevskij,
L. Valkunas, Phys. Chem. Chem. Phys. 1, 1715 (1999)
123