ꢀ
Table 2 Composition and potential response characteristics of the HSO4 ion-selective electrode
PVC (mg)
100.7
DOSa (mg)
200.1
ToMA Cla (mg)
1.2
Ionophore 1 (mg)
Linear range (M)
Detection limit (M)
Slope (mV/decade)
5.3
1.0 ꢁ 10ꢀ1
3.75 ꢁ 10ꢀ6
ꢀ57.47
ꢀ1.0 ꢁ 10ꢀ5
DOS: Dioctyl sebacate as plasticizer; ToMA Cl: Tri-octyl methyl ammonium chloride.
a
based on 1 for the application. A sensor membrane incorporating
1 was prepared and assembled as previously reported.13 The
potentiometric cell used was Ag/AgCl (3.0 M KCl)/1.0 ꢁ
ions to 1 resulted in a pronounced ‘Off–On’ pattern in the
fluorescence spectra. In addition, a remarkably selective
potentiometric response was accomplished for the HSO4ꢀ ions
over a variety of other anions using an ion-selective electrode
based on 1, incorporated into a polymeric (PVC) membrane.
Hydrogen sulfate selectivity was due to the formation of a
hydrogen bond between the phenolic –OH and the imine
10ꢀ2
M
TBA+HSO4ꢀ/PVC membrane/Test solution/
(3.0 M KCl) AgCl/Ag. The composition of this membrane is
listed in Table 2.
In preliminary experiments, the ionophore 1 acted as an
efficient ion carrier for the HSO4ꢀ anion in comparison to other
examined anions (Fig. S11wꢀ). Most interestingly, the response
time for sensing the HSO4 was less than 10 s (Fig. S12w)
with a suitable operational pH for the sensor from 1.4 to 4.9
(Fig. S13w).
ꢀ
nitrogen atom in 1 and the HSO4 ions.
This work was supported by the CRI program, SRC
(20090063001), and KRF-2008-313-C00501 of the National
Research Foundation of Korea. JYL acknowledges the
KOSEF (No. R11-2007-012-03002-0) and KRF (KRF-2008-313-
C00388) grants by MEST.
Next, the potentiometric selectivity coefficients over inter-
fering ions were determined using the fixed interference method.
Pot
Accordingly, potentiometric selectivity coefficients ðlog K ꢀ;BÞ
HSO4
Notes and references
can be evaluated by carrying out potential measurements on
solutions containing fixed concentrations of interfering ions
z Single crystal data for 1: C17H10F3NO3, Mw = 333.26, plate orange
crystal, size: 0.30 ꢁ 0.30 ꢁ 0.30 mm3, monoclinic, space group P21/n,
a = 9.855(2) A, b = 5.4280(11) A, c = 26.716(5) A, V = 1428.9(5) A3,
T = 293(2) K, Z = 4, D = 1.549 Mg/m3, r = 0.133 mmꢀ1, F(000) =
(1.0 ꢁ 10ꢀ2 M) and varying concentrations of the HSO4
ꢀ
anion. Table 3 shows the potentiometric selectivity coefficient
680; 7321 reflections measured, of which 2796 were unique (Rint
=
data of the ionophore 1–PVC membrane electrodes for inter-
ꢀ
0.0552). 219 refined parameters, final R1 = 0.0530 for reflections with
I > 2s(I), wR2 = 0.1541 (all data), GOF = 0.925. Final largest
fering anions relative to the HSO4 ions. The selectivity
diffraction peak and hole: 0.192 and ꢀ0.236 e. Aꢀ3
.
coefficient pattern clearly indicates that the electrodes are
ꢀ
1 A. P. de Silva, H. Q. N. Gunaratne, T. Gunnlaugsson, A. J.
M. Huxley, C. P. McCoy, J. T. Rademacher and T. E. Rice, Chem.
Rev., 1997, 97, 1515; J. S. Kim and D. T. Quang, Chem. Rev., 2007,
107, 3780; H. N. Kim, M. H. Lee, H. J. Kim, J. S. Kim and
J. Yoon, Chem. Soc. Rev., 2008, 37, 1465.
2 S. K. Kim, S. H. Lee, J. Y. Lee, R. A. Bartsch and J. S. Kim, J. Am.
Chem. Soc., 2004, 126, 16499; S. K. Kim, J. H. Bok, R. A. Bartsch,
J. Y. Lee and J. S. Kim, Org. Lett., 2005, 7, 4839; H.-F. Ji,
G. M. Brown and R. Dabestani, Chem. Commun., 1999, 609.
3 P. D. Beer, Acc. Chem. Res., 1998, 31, 71; M. J. Kim, R. Konduri,
H. Ye, F. M. MacDonnell, F. Puntoriero, S. Serroni, S. Campagna,
T. Holder, G. Kinsel and K. Rajeshwar, Inorg. Chem., 2002, 41, 2471.
4 Z. Xu, Y. Xiao, X. Qian, J. Cui and D. Cui, Org. Lett., 2005, 7, 889;
J. B. Wang, X. F. Qian and J. N. Cui, J. Org. Chem., 2006, 71, 4308.
5 J.-S. Wu, J.-H. Zhou, P.-F. Wang, X.-H. Zhang and S.- K. Wu,
Org. Lett., 2005, 7, 2133; B. Schazmann, N. Alhashimy and
D. Diamond, J. Am. Chem. Soc., 2006, 128, 8607.
selective for HSO4 over
a number of other anions.
The selectivity coefficient values are obtained for different
ꢀ
secondary anions with the proposed HSO4 ion-selective
electrode, suggesting that these anions do not interfere in the
normal working of the proposed electrode, even when present
at high concentration levels of 1.0 ꢁ 10ꢀ2 M.
ꢀ
In addition, practical application of the proposed HSO4
ion-selective electrode was tested by employing it as an indicator
electrode during the potentiometric titration of the hydrogen
sulfate ion (20.0 mL, 1.0 ꢁ 10ꢀ2 M) against sodium hydroxide
(1.0 ꢁ 10ꢀ2 M) solution. A sharp potential change near the end
point indicated that the proposed electrode could be successfully
used for monitoring potentiometric titrations (Fig. S14w).
In summary, we have designed and synthesized a new,
coumarin-basꢀed, water-compatible, fluorescence ‘turn-on’ sensor
(1) for HSO4 ions. Complexation studies by NMR, UV, and
fluorescence spectroscopy were carried out towards different
anions to demonstrate the sensor’s excellent selectivity for the
6 P. Ebbersen, J. Immunol., 1972, 109, 1296.
7 T. J. Grahame and R. B. Schlesinger, Inhalation Toxicol., 2005, 17,
15; P. I. Jalava, R. O. Salonen, A. S. Pennanen, M. S. Happo,
¨ ¨ ¨
P. Penttinen, A. I. Halinen, M. Sillanpaa, R. Hillamo and
M.-R. Hirvone, Toxicol. Appl. Pharmacol., 2008, 229, 146.
8 J. L. Sessler, E. Katayev, G. D. Pantos and Y. A. Ustynyuk, Chem.
Commun., 2004, 1276; R. Shen, X. Pan, H. Wang, L. Yao, J. Wu
and N. Tang, Dalton Trans., 2008, 3574; N. Singh, N. Kaur,
J. Dunn, R. Behan, R. C. Mulrooney and J. F. Callan, Eur. Polym.
J., 2009, 45, 272.
ꢀ
HSO4 ion over other anions tested. In the DFT calculations,
ꢀ
application of the PET mechanism upon addition of HSO4
ꢀ
Table 3 Selectivity coefficients for the HSO4 ion-selective electrode
9 See Electronic Supplementary Information (ESI).
10 Association constants were calculated using the computer program
ENZFITTER, available from Elsevier-BIOSOFT, 68 Hills Road,
Cambridge, UK CB2 1LA; K. A. Connors, Binding Constants,
Wiley, New York, 1987.
11 M. J. Frisch, et al., GAUSSIAN 03 (Revision D.02), Gaussian,
Inc., Pittsburgh, PA, 2006.
12 M. Chanon, M. D. Hawley and M. A. Fox, in Photoinduced
Electron Transfer, ed. M. A. Fox and M. Chanon, Elsevier,
Amsterdom, 1988, part A, p. 1.
Pot
Pot
Secondary ions (B) LogK
Secondary ions (B) LogK
HSOꢀ4 ;B
HSOꢀ4 ;B
ꢀ
ꢀ
2ꢀ
CH3CO2
Fꢀ
ꢀ3.78
ꢀ2.95
ꢀ3.20
ꢀ4.00
ꢀ3.05
ꢀ3.30
ꢀ4.75
ꢀ1.00
NO2
CO3
ꢀ3.00
ꢀ3.85
ꢀ4.44
ꢀ3.90
ꢀ2.90
ꢀ2.55
ꢀ0.80
ꢀ3.50
SCNꢀꢀ
Citrate
C2O4
2ꢀ
NO3
N3
HCOOꢀ
Brꢀ
ꢀ
2ꢀ
CO3
SO4
Iꢀ
H2PO4
2ꢀ
13 R. K. Mahajan, I. Kaur, R. Kaur, A. Onimaru, S. Shinoda and
H. Tsukube, Anal. Chem., 2004, 76, 7354.
Clꢀ
ꢀ
ꢂc
This journal is The Royal Society of Chemistry 2009
7130 | Chem. Commun., 2009, 7128–7130