S. McGaraughty, C. T. Wismer, J. Mikusa, K. C. Marsh, R. D. Snyder,
M. S. Diehl, E. A. Kowaluk, M. F. Jarvis and S. S. Bhagwat, Bioorg.
Med. Chem., 2005, 13, 3705–3709.
7 S. N. VanderWel, P. J. Harvey, D. J. McNamara, J. T. Repine, P. R.
Keller, J. Quin III, R. J. Booth, W. L. Elliott, E. M. Dobrusin, D. W.
Fry and P. L. Toogood, J. Med. Chem., 2005, 48, 2371–87.
8 A. Tikad, S. Routier, M. Akssira, J. M. Le´ger, C. Jarry and G.
Guillaumet, Synlett., 2006, 1938–1942.
9 A. Tikad, S. Routier, M. Akssira, J. M. Le´ger, C. Jarry and G.
Guillaumet, Org. Lett., 2007, 9, 4673–4676.
Scheme 5 One pot SNAr/Buchwald synthesis. Reagents and conditions:
PhNH2 1.0 equiv., Et3N 2.0 equiv., 1,4-dioxane, r.t., 2 h; then 6-amino-
quinoline 1.2 equiv., Pd(OAc)2 0.05 equiv., Xantphos 0.1 equiv., (reflux,
46 h, 82% or MW irradiation 140 ◦C, 2 h, 78%).
10 (a) F. Beaumard, P. Dauban and R. H. Dodd, Org. Lett., 2009, 11,
1801–1804; (b) S. T. Handy, T. Wilson and A. Muth, J. Org. Chem.,
2007, 72, 8496–8500; (c) S. T. Handy and J. J. Sabatini, Org. Lett., 2006,
8, 1537–1539; (d) S. T. Handy and D. Mayi, Tetrahedron Lett., 2007, 48,
8108–8110; (e) G. Langli, L.-L. Gundersen and F. Rise, Tetrahedron,
1996, 52, 5625–5638.
11 (a) Q. Xiao and P. E. Floreancig, Org. Lett., 2008, 10, 1139–1142;
(b) Y. H. Kim, H. Lee, Y. J. Kim, B. T. Kim and J.-N. Heo, J. Org.
Chem., 2008, 73, 495–501; (c) L. B. Sun, J. Yang, J. H. Kou, F. N. Gu,
Y. Chun, Y. Wang, J. H. Zhu and Z. G. Zou, Angew. Chem., Int. Ed.,
2008, 47, 3418–3421; (d) H. Wang, A. Wang, X. Wang and T. Zhang,
Chem. Commun., 2008, 2565–2567; (e) A. W. Franz and T. J. J. Mueller,
Synthesis, 2008, 1121–1125; (f) S. Song, L. Song, B. Dai, H. Yi, G. Jin,
S. Zhu and M. Shao, Tetrahedron, 2008, 64, 5728–5735; (g) S. Hajra, S.
Bar, D. Sinha and B. Maji, J. Org. Chem., 2008, 73, 4320–4322; (h) L.
Zhu, M. Patel and M. Zhang, Tetrahedron Lett., 2008, 49, 2734–2737.
12 J. Koubachi, S. El Kazzouli, S. Berteina-Raboin, A. Mouaddib and G.
Guillaumet, J. Org. Chem., 2007, 72, 7650–7665.
13 General procedure for the one-pot double Suzuki–Miyaura cross-
coupling reactions (compounds 3–11): To an argon degassed solution of
2,4-dichloropyrido[3,2-d]pyrimidine 1 (100 mg, 0.5 mmol) in toluene
(6 mL), the desired (het)Ar boronic acid (1.05 equiv.), K2CO3 (138 mg,
2 equiv.), Pd(OAc)2 (6.0 mg, 0.05 equiv.) and PPh3 (13 mg, 0.1 equiv.)
were successively added. The reaction mixture was heated at 100 ◦C
under vigorous stirring. After complete disappearance of 1 on TLC, the
second (het)aryl boronic acid (1.2 equiv.) in EtOH (3 mL) was added.
After complete conversion of the C-4 monoarylated non-isolated
intermediate, the reaction mixture was cooled to room temperature
and concentrated under reduced pressure. Water (10 mL) and CH2Cl2
(10 mL) were successively added. After extraction of the aqueous
phase with CH2Cl2 (3 ¥ 10 mL), the combined organic layers were
dried over MgSO4, filtered and evaporated under reduced pressure.
The crude material was purified by flash chromatography to afford
the attempted compounds 3–11. 4-(3-Methoxyphenyl)-2-(thien-2-yl)-
pyrido[3,2-d]pyrimidine (10). Compound 10 was isolated after a flash
chromatography (petroleum ether/EtOAc, 9/1) as a pale yellow solid
in 86% yield. Mpt 119–120 ◦C; IR (ATR-Ge, cm-1) n 3063, 2832, 1594,
1532, 1451, 1323, 1256, 1036, 867, 790; 1H NMR (400 MHz, CDCl3) d
3.88 (s, 3H, CH3), 7.10 (dd, 1H, J = 2.1 Hz, J = 7.8 Hz), 7.18 (dd, 1H,
J = 3.8 Hz, J = 5.0 Hz), 7.43 (t, 1H, J = 8.0 Hz), 7.56 (dd, 1H, J =
1.0 Hz, J = 5.0 Hz), 7.70 (dd, 1H, J = 4.1 Hz, J = 8.6 Hz, H7), 8.03-8.04
(m, 1H), 8.07 (d, 1H, J = 7.8 Hz), 8.37 (d, 1H, J = 3.8 Hz), 8.46 (dd,
1H, J = 1.6 Hz, J = 8.6 Hz, H8), 8.92 (dd, 1H, J = 1.6 Hz, J = 4.1 Hz,
H6); 13C NMR (100 MHz, CDCl3) d 55.4 (CH3), 117.2 (CH), 117.3
(CH), 124.8 (CH), 128.4 (CH), 129.0 (CH), 129.2 (CH), 131.4 (CH),
132.2 (CH), 134.9 (CH), 136.7 (Cq), 137.2 (Cq), 141.6 (Cq), 146.3 (Cq),
150.7 (CH), 156.3 (Cq), 159.3 (Cq), 167.0 (Cq); HRMS (EI-MS) : m/z
calcd for C18H14N3OS: 320.0858, found: 320.0867.
microwave irradiation step, we efficiently performed a double one-
pot amination of pyrido[3,2-d]pyrimidine 1 using successive SNAr
and Buchwald-type reactions to get around the lack of reactivity
of strongly deactivated amines.
Conclusion
Herein, we have described three original one-pot proce-
dures to generate 2,4-disubstituted pyrido[3,2-d]pyrimidines from
2,4-dichloropyrido[3,2-d]pyrimidine 1 using SNAr and palladium-
catalyzed reactions. This unprecedented work included a double
Suzuki–Miyaura cross-coupling, a double SNAr reaction and an
SNAr/Buchwald combination, which proved to be very efficient.
The C-4 versus C-2 chlorine discrimination under Suzuki or
SNAr conditions is the key to achieving the first steps in only a
few hours. The second C-2 arylations were realized in a few minutes
under thermal activation, whereas the second C-2 aminations
required microwave irradiation to be achieved in a few hours. The
C-2 aminations were mostly performed by SNAr reactions and,
last but not least, the deactivated amines were introduced under
Buchwald-type conditions. This strategy has also proved to be
very useful in the double substitution of pyrido[3,2-d]pyrimidine.
Efforts are already in progress to broaden the methodology to
other heterocycles.
Acknowledgements
SR acknowledges the Canceropoˆle Grand Ouest and the Ligue
contre le Cancer (Re´gion Centre) for their financial support. The
authors thank the PHC Volubilis grant.
Notes and references
1 J. M. Hamby and H. D. H. Showalter, Pharmacol. Ther., 1999, 82,
169–193.
14 (a) B. U. W. Maes, K. T. J. Loones, S. Hostyn, G. Diels and G. Rombouts,
Tetrahedron Lett., 2004, 60, 11559–11564; (b) T. A. Jensen, X. Liang, D.
Tanner and N. Skjaerbaek, J. Org. Chem., 2004, 69, 4936–4947; (c) C. O.
Kappe and M. Larhed, Angew. Chem., Int. Ed., 2005, 44, 7666–7669;
(d) A. P. Skoumbourdis, S. Moore, M. Landsman and C. J. Thomas,
Tetrahedron Lett., 2007, 48, 9140–43.
15 General procedure for the one-pot double SNAr (compounds 13–20): To a
solution of 2,4-dichloropyrido[3,2-d]pyrimidine 1 (100 mg, 0.5 mmol)
in dry 1,4-dioxane (5 mL), the first primary amine R1NH2 (1.01 equiv.)
and Et3N (130 mL, 2.1 equiv.) were successively added. The reaction
mixture was stirred at room temperature and after the complete disap-
pearance of 1, the second amine R2NH2 (1.2 equiv.) was added and the
reaction was subject to microwave irradiation at 140 ◦C. After complete
conversion of the non-isolated C-4 monoaminated intermediate, the
reaction mixture was cooled to room temperature and the solvent was
evaporated under reduced pressure. The crude residue was purified
by silica gel column chromatography or by triturating with Et2O to
2 A. Gangjee, O. Adair and S. F. Queener, J. Med. Chem., 1999, 42,
2447–2455.
3 S. R. Natarajan, D. D. Wisnoski, S. B. Singh, J. E. Stelmach, E. A.
O’Neill, C. D. Schwartz, C. M. Thompson, C. E. Fitzgerald, S. J.
O’Keefe, S. Kumar, C. E. C. A. Hop, D. M. Zaller, Schmatz and
D. M. J. B. Doherty, Bioorg. Med. Chem. Lett., 2003, 13, 273–276.
4 M. Hayakawa, H. Kaizawa, H. Moritomo, T. Koizumi, T. Ohishi, M.
Okada, M. Ohta, S.-I. Tsukamoto, P. Parker, P. Workman and M.
Waterfield, Bioorg. Med. Chem., 2006, 14, 6847–6858.
5 S. R. Klutchko, H. Zhou, R. T. Winters, T. P. Tran, A. J. Bridges,
I. W. Althaus, D. M. Amato, W. L. Elliott, P. A. Ellis, M. A. Meade,
B. J. Roberts, D. W. Fry, A. J. Gonzales, P. J. Harvey, J. M. Nelson, V.
Sherwood, H.-K. Han, G. Pace, J. B. W. A. Smaill, H. D. Denny and
Hollis Showalter, J. Med. Chem., 2006, 49, 1475–1485.
6 M. A. Matulenko, C.-H. Lee, M. Jiang, R. R. Frey, M. D. Cowart, E. K.
Bayburt, S. DiDomenico, G. A. Gfesser, A. Gomtsyan, G. Z. Zheng,
J. A. McKie, A. O. Stewart, H. Yu, K. L. Kohlhaas, K. M. Alexander,
This journal is
The Royal Society of Chemistry 2009
Org. Biomol. Chem., 2009, 7, 5113–5118 | 5117
©