4838 Inorg. Chem., Vol. 48, No. 11, 2009
Llusar et al.
Figure 1. Schematic representation with designations of Mo3CuS4 and Mo3S4 clusters.
[Re6Q8(CN)6]4- (Q = S, Se, Te)11,12 and [W6S8(CN)6]6-13 or
edge-bridged [Nb6Cl12(CN)6]4- 14 cluster units in linking
reactions with transition metals. CN-coordinated cubane-
replace iodide by solvent or bidentate ligands.17 This might
not only offer us a variety of extended structures but also help
to circumvent the insolubility problem mentioned above.
Recently, our group have been involved in the preparation
of cubane-type Mo3CuS4 and Mo3S4 complexes bearing
diphosphane ligands and the study of their non linear opti-
cal,18 electrochemical, and catalytic properties.19 The two
Mo3CuS4 and Mo3S4 moieties are topologically related. The
trinuclear cluster core in Mo3S4 is formed by three molybde-
num atoms defining an equilateral triangle, one capping sulfur
and three bridging sulfur ligands, which can be regarded as an
incomplete-cuboidal structure (see Figure 1). The vacant
corner of the cube can be occupied by a copper atom leading
to the cubane-type Mo3CuS4 arrangement in which the four
chalcogen atoms are capping each face of the tetrahedra
defined by the Mo3Cu core (see Figure 1). The coordination
environment around the Mo sites is filled by halide and
diphosphane ligands, the latter being substitutionally inert so
that they can lock the desired ligand configurations onto the
clusters, retain the overall C3 symmetry of the complex, and in
our experience, promote the stability and crystallinity of the
new Mo3CuS4 and Mo3S4 formed products.18,20
type clusters, namely [M4Te4(CN)12]n- (M = W,15 Re12,16
)
have also proved to be versatile building blocks in the
preparation of larger discrete or extended solids.
A challenge remaining in this direction is that insoluble
products are typically formed whose intimate structure is
difficult to anticipate, mainly because of the large number of
potential CN-bridged species. One way to direct and/or
control the formation of low-dimensional extended networks
consists of making clusters with mixed ligands that have
different binding energies or labilities, so that one can
selectively coordinate bidentate ligands by replacing the
thermodynamically less favorable or labile ligands while
leaving the thermodynamically more favorable or inert
ligands unaffected. As illustrated for the series of site-differ-
entiated hexanuclear [Re6(μ-Se)8(PEt)6I6-n]
(n-4)+ (n = 4-6)
clusters, the remarkable stability of phosphane ligands is very
suited for this purpose because it allows one to selectively
(11) (a) Mironov, Y., V.; Cody, J. A.; Albrecht-Schmitt, T. E.; Ibers, J. A.
J. Am. Chem. Soc. 1997, 119, 493. (b) Beauvais, L. G.; Shores, M. P.; Long, J.
R. Chem. Mater. 1998, 10, 3783. (c) Naumov, N. G.; Virovets, A. V.;
Sokolov, M. N.; Artemkina, S. B.; Fedorov, V. E. Angew. Chem., Int. Ed.
1998, 37, 1943. (d) Naumov, N. G.; Artemkina, S. B.; Virovets, A. V.;
Fedorov, V. E. Solid State Sci. 1999, 1, 473. (e) Beauvais, L. G.; Long, J. R. J.
Am. Chem. Soc. 1999, 121, 775. (f ) Shores, M. P.; Beauvais, L. G.; Long, J. R.
J. Am. Chem. Soc. 1999, 121, 775. (g) Magliocchi, C.; Xie, X.; Hughbanks, T.
Inorg. Chem. 2000, 39, 5000. (h) Beauvais, L. G.; Shores, M. P.; Long, J. R. J.
Am. Chem. Soc. 2000, 122, 2763. (i) Bennet, M. V.; Shores, M. P.; Beauvais, L.
G.; Long, J. R. J. Am. Chem. Soc. 2000, 122, 6664. ( j) Naumov, N. G.;
Artemkina, S. B.; Virovets, A. V.; Fedorov, V. E. J. Solid State Chem. 2000,
153, 195. (k) Naumov, N. G.; Virovets, A. V.; Fedorov, V. E. Inorg. Chem.
Commun. 2000, 3, 71. (l) Naumov, N. G.; Soldatov, D. V.; Ripmeester, J. A.;
Artemkina, S. B.; Fedorov, V. E. Chem. Commun. 2001, 571. (m) Bennet, M.
V.; Beauvais, L. G.; Shores, M. P.; Long, J. R. J. Am. Chem. Soc. 2001, 123,
8022. (n) Jin, S.; DiSalvo, F. Chem. Commun. 2001, 1586. (o) Kim, Y.; Park,
S. M.; Nam, W.; Kim, S. J. Chem. Commun. 2001, 1470. (p) Kim, Y.; Park, S.
M.; Kim, S. J. Inorg. Chem. Commun. 2002, 5, 592. (q) Artemkina, S. B.;
Naumov, N. G.; Virovets, A. V.; Oeckler, O.; Simon, A.; Erenburg, S. B.;
Bausk, N. V.; Fedorov, V. E. Eur. J. Inorg. Chem. 2002, 1198.
The use of these Mo3CuS4 and Mo3S4 clusters as building
blocks of larger mixed-metal assemblies remains largely
unexplored. In this sense, for cubane-type Mo3CuS4 and
Mo3S4 cluster complexes to serve as molecular building
blocks, it must be possible to connect things together with
them. This implies complete control of substitution reactions
in the labile Cu-Cl and Mo-Cl positions by bidentate
ligands to subsequently explore their assembly. Herein, we
describe such a study in which we have used cyanide ligands
that have the capability of bridging to other metal centers and
thereby enable, in principle, the assembly of mixed-metal
complexes retaining the Mo3CuS4 and Mo3S4 clusters. The
pentacarbonyl molybdenum Mo(CO)5 fragment is chosen
because of its great spectroscopic utility because of the fact
that the carbonyl infrared stretching frequencies are extre-
mely sensitive probes of the electronic structure of the
complex. A combination of experimental techniques are used
(12) Mironov, Y., V.; Fedorov, V. E.; Ijjaali, I.; Ibers, J. A. Inorg. Chem.
2001, 40, 6320.
to investigate the intrinsic stability of the M0-μCN
3 3 3
(13) (a) Jin, S.; DiSalvo, F. Chem. Mater. 2002, 14, 3448. (b) Jin, S.;
Venkataraman, D.; DiSalvo, F. Inorg. Chem. 2000, 37, 2747.
(14) (a) Yan, B.; Zhou, H.; Lachgar, A. Inorg. Chem. 2003, 42, 8818. (b)
Zhou, H.; Lachgar, A. Eur. J. Inorg. Chem. 2007, 1053. (c) Zhang, J.;
Lachgar, A. J. Am. Chem. Soc. 2007, 129, 250.
Mo(CO)5 (M0= Cu, Mo) linkages as well as the spectro-
scopic and electrochemical consequences of CN coordination
as well as Mo(CO)5 ligation either on the Mo or the Cu site in
Mo3CuS4 and Mo3S4 clusters.
(15) (a) Fedin, V. P.; Virovets, A. V.; Kalinina, I. V.; Ikorskii, V. N.;
Elsegood, M. R. J.; Clegg, W. Eur. J. Inorg. Chem. 2000, 2341. (b) Fedin, V.
P.; Kalinina, I. V.; Gerasimenko, A.; Virovets, A. V. Inorg. Chim. Acta 2002,
331, 48. (c) Fedin, V. P.; Kalinina, I. V.; Virovets, A. V.; Fenske, D. Russ.
Chem. Bull. 2003, 52, 123. (d) Kalinina, I. V.; Virovets, A. V.; Dolgushin, V.
M.; Antipin, M. Y.; Llusar, R.; Fedin, V. P. Inorg. Chim. Acta 2004, 357,
3390.
(16) (a) Mironov, Y., V.; Efremova, O. A.; Naumov, D. Y.; Scheldrick, W.
S.; Fedorov, V. E. Eur. J. Inorg. Chem. 2003, 2591. (b) Brylev, K. A.;
Mironov, Y. V.; Naumov, N. G.; Fedorov, V. E.; Ibers, J. A. Inorg. Chem.
2004, 43, 4833. (c) Efremova, O. A.; Mironov, Y., V.; Fedorov, V. E. Eur. J.
Inorg. Chem. 2006, 2533.
(17) (a) Zheng, Z.; Long, J. R.; Holm, R. H. J. Am. Chem. Soc. 1997, 119,
2163. (b) Gray, T. G.; Holm, R. H. Inorg. Chem. 2002, 41, 4211. (b) Selby, H.
D.; Roland, B. K.; Zheng, Z. Acc. Chem. Res. 2003, 36, 933.
(18) Feliz, M.; Garriga, J. M.; Llusar, R.; Uriel, S.; Humphrey, M. G.;
Lucas, N. T.; Samoc, M.; Luther-Davies, B. Inorg. Chem. 2001, 40, 6132.
(19) (a) Feliz, M.; Guillamon, E.; Llusar, R.; Vicent, C.; Stiriba, S. E.;
Perez-Prieto, J.; Barberis, M. Chem.;Eur. J. 2006, 12, 1486. (b) Guillamon,
E.; Llusar, R.; Perez-Prieto, J.; Stiriba, S. E. J. Organomet. Chem. 2008, 693,
1723.
(20) Llusar, R.; Uriel, S.; Vicent, C. J. Chem. Soc., Dalton Trans. 2001,
2813.