184
H. Kotaka et al. / Tetrahedron Letters 51 (2010) 181–184
21. Compound 3b (–Si(CH3)3) yield 64%; pale yellow oil; 1H NMR (400 MHz, CDCl3)
References and notes
d 7.77 (d, J = 7.8 Hz, 2H), 7.68–7.56 (m, 12H), 2.04–2.00 (m, 4H), 1.19–1.05 (m,
20H), 0.77 (t, J = 7.1 Hz, 6H), 0.74–0.72 (m, 4H), 0.32 (s, 18H) ppm; 13C NMR
(100 MHz, CDCl3) d 151.7, 142.1, 140.2, 140.0, 139.0, 133.8, 126.5, 126.0, 121.6,
120.0, 55.2, 40.4, 31.8, 30.0, 29.1, 23.8, 22.6, 14.1, À1.1 ppm; FT-IR (NaCl) 2926,
2854, 1598, 1465 cmÀ1; MS (EI) calcd for C47H66Si2 686.4703, found 686.4696
(M+).
1. Fukuda, M.; Sawada, K.; Yoshino, K. Jpn. J. Appl. Phys. 1989, 28, 1433–1435.
2. Leclerc, M. J. Polym. Sci., Polym. Chem. Ed. 2001, 39, 2867–2873.
3. Jo, J.; Chi, C.; Höger, S.; Wegner, G.; Yoon, D. Y. Chem. Eur. J. 2004, 10, 2681–
2688.
4. Morisaki, Y.; Chujo, Y. Bull. Chem. Soc. Jpn. 2005, 78, 288–293.
5. Pei, Q.; Yang, Y. J. Am. Chem. Soc. 1996, 118, 7416–7417.
6. Grice, A. W.; Bradley, D. D. C.; Bernius, M. T.; Inbasekaran, M.; Wu, W. W.; Woo,
E. P. Appl. Phys. Lett. 1998, 73, 629–631.
7. Sainova, D.; Miteva, T.; Nothofer, H. G.; Scherf, U.; Glowacki, I.; Ulanski, J.;
Fujikawa, H.; Neher, D. Appl. Phys. Lett. 2000, 76, 1810–1812.
8. Grisorio, R.; Dell’Aquila, A.; Romanazzi, G.; Suranna, G. P.; Mastrorilli, P.;
Cosma, P.; Acierno, D.; Amendola, E.; Ciccarella, G.; Nobile, C. F. Tetrahedron
2006, 62, 627–634.
9. Grisorio, R.; Piliego, C.; Fini, P.; Cosma, P.; Mastrorilli, P.; Gigli, G.; Suranna, G.
P.; Nobile, C. F. J. Phys. Chem. C 2008, 112, 7005–7014.
10. Wang, I.; Botzung-Appert, E.; Stéphan, O.; Ibanez, A.; Baldeck, P. L. J. Opt. A: Pure
Appl. Opt. 2002, 4, 258–260.
11. Ergen, E.; Weber, M.; Jacob, J.; Herrmann, A.; Müllen, K. Chem. Eur. J. 2006, 12,
3707.
12. Belletete, M.; Morin, J. F.; Beaupre, S.; Leclerc, M.; Durocher, G. Synth. Metall.
2002, 126, 43–51.
22. Compound 3d (–CN) yield 87%; colorless crystal; mp 106.9–107.2 °C; 1H NMR
(400 MHz, CDCl3)
d 7.83 (d, J = 11.5 Hz, 2H), 7.78–7.76 (m, 8H), 7.60 (d,
J = 11.5 Hz, 2H), 7.56 (s, 2H), 2.08–2.02 (m, 4H), 1.18–1.06 (m, 20H), 0.78 (t,
J = 10.0 Hz, 6H), 0.71–0.68 (m, 4H) ppm; 13C NMR (100 MHz, CDCl3) d 152.1,
145.9, 140.9, 138.4, 132.6, 127.7, 126.4, 121.5, 120.6, 119.0, 110.7, 55.5, 40.3,
31.7, 29.9, 29.1, 23.3, 22.6, 14.0 ppm; FT-IR (KBr) 2925, 2851, 2225, 1603, 1509,
1465 cmÀ1.; MS (FAB) calcd for C43H48N2 593.3896, found 593.3855 (M+); Anal.
Calcd for C43H48N2: C, 87.11; H, 8.16; N, 4.73. Found: C, 87.17; H, 8.41; N, 4.69.
23. Compound 3e (–NO2) yield 98%; yellow crystal; mp 135.0–135.4 °C; 1H NMR
(400 MHz, CDCl3)
d 8.34 (d, J = 12.9 Hz, 4H), 7.87–7.80 (m, 6H), 7.65 (d,
J = 11.7 Hz, 2H), 7.60 (s, 2H), 2.10–2.04 (m, 4H), 1.20–1.07 (m, 20H), 0.78 (t,
J = 9.9 Hz, 6H), 0.74–0.65 (m, 4H) ppm; 13C NMR (100 MHz, CDCl3) d 152.2,
147.9, 147.0, 141.2, 138.1, 127.8, 126.7, 124.1, 121.7, 120.7, 55.6, 40.3, 31.7, 29.9,
29.1, 23.8, 22.5, 14.0 ppm; FT-IR (KBr) 2923, 2851, 1594, 1464, 1515, 1344 cmÀ1
;
MS (FAB) calcd for C41H48N2O4 633.3701, found: 633.3692 (M+); Anal. Calcd for
C41H48N2O4: C, 77.82; H, 7.65; N, 4.43. Found: C, 77.73; H, 7.81; N, 4.39.
24. Absolute fluorescence quantum yields were determined by the
photoluminescence (PL) method using a Hamamatsu DynaSpect C 9920-02
absolute PL quantum yield measurement system.
13. Wu, R.; Schumm, J. S.; Pearson, D. L.; Tour, J. M. J. Org. Chem. 1996, 61, 6906.
14. Destri, S.; Pasini, M.; Botta, C.; Porzio, W.; Bertini, F.; Marchiò, L. J. Mater. Chem.
2002, 12, 924.
15. Neeraj, A.; Pabitra, K. N.; Periasamy, N. J. Chem. Sci. 2008, 120, 355.
16. Rtishchev, N. I.; Samoilov, D. V.; Martynova, V. P.; El’tsov, A. V. Russ. J. Gen.
Chem. 2001, 71, 1467–1478.
25. Time-resolved emission was measured on a Hamamatsu OB920 by time-
correlated single-photon counting using a hydrogen flash lamp. Fluorescence
lifetimes were determined by a single exponential curve fit.
26. Chou, C.-H.; Hsu, S.-L.; Dinakaran, K.; Chiu, M.-Y.; Wei, K.-H. Macromolecules
2005, 38, 745–751.
27. Burrows, H. D.; Melo, J. S.; Serpa, C.; Arnaut, L. G.; Monkman, A. P.; Hamblett, I.;
Navaratnam, S. J. Chem. Phys. 2001, 115, 9601–9606.
28. Maeda, H.; Maeda, T.; Mizuno, K.; Fujimoto, K.; Shimizu, H.; Inouye, M. Chem.
Eur. J. 2006, 12, 824–831.
17. Samori, S.; Tojo, S.; Fujitsuka, M.; Spitler, E. L.; Haley, M. M.; Majima, T. J. Org.
Chem. 2007, 72, 2785–2793.
18. Beinhoff, M.; Weigel, W.; Jurczok, M.; Rettig, W.; Modrakowski, C.; Brüdgam, I.;
Hartl, H.; Schlüter, A. D. Eur. J. Org. Chem. 2001, 20, 3819–3829.
19. Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457–2483.
20. Typical procedure: 3a (–H): The toluene solution of 9,9-dioctylfluorene-2,7-
29. Montalti, M.; Credi, A.; Prodi, L.; Gandolfi, M. T. Handbook of Photochemistry,
3rd ed.; CRC Press, 2006.
bis(trimethyleneborate)
1 (0.56 g, 1.00 mmol), iodobenzene 2a (0.45 g,
2.20 mmol), K3PO4ÁnH2O (1.92 g, 6.69 mmol), and Pd(PPh3)4 (0.10 g,
0.089 mmol) was heated under argon atmosphere for 24 h. After cooling to
room temperature, the resulting mixtures were concentrated under reduced
pressure. The residue was purified by column chromatography on silica gel
using toluene as an eluent: yield 66%; colorless oil.
30. Grabowski, Z. R.; Rotkiewicz, K.; Rettig, W. Chem. Rev. 2003, 103, 3899–4031.
31. Dias, F. B.; Pollock, S.; Hedley, G.; Pålsson, L.-O.; Monkman, A.; Perepichka, I. I.;
Perepichka, I. F.; Tavasli, M.; Bryce, M. R. J. Phys. Chem. B 2006, 110, 19329–
19339.