252
D. Wang et al. / Journal of Molecular Structure 938 (2009) 245–253
umn chromatographied on silica gel with chloroform as eluent.
Compound 2 (10 mg, 0.012 mmol) was collected from the second
fraction with a yield of 6.3%.
4.2. Calculation model and method
By Gaussian03 quantum chemical software package [36], we
employ b3lyp/6-31g(d) theoretical methods and basis set for these
six PDI derivatives structural optimization and vibration analysis.
Vibration analysis results show that there is no imaginary fre-
quency appears, so the structures of these PDI derivatives are sta-
ble ground state structure. Take advantage of these ground state
structure, we use TD-B3lyp/6-31g(d) and TD-PBE1PBE/6-31g(d)
to calculate the absorption spectra. Use cis/3-21g(d) optimize the
first excited singlet state of these six PDI derivatives. Vibration
analysis results show that there is no imaginary frequency appears,
so the excited state structure is stable structure. Then we use TD-
B3lyp/6-31g(d) and TD-PBE1PBE1/6-31g(d) to calculate the fluo-
rescence emission wavelength. All the calculations were performed
using the Gaussian 03 program in the IBM P690 system at the
Shandong Province High Performance Computing Centre. With
the help of the SWIZARD software [37], the calculated electronic
absorption data of 1 and 6, were simulated to sequential absorp-
tion spectrum.
4.1.4. N,N-dicyclohexyl-1-dodecyloxy-7-(1,2-bis(4-
ethynylphenyl)ethyne)perylene-3,4,9,10-tetracarboxydiimide (3)
With 2 (21 mg) as starting material, following the similar proce-
dures of 2, compound 3 was prepared. Yield: 14.3 mg, (60%). 1H
NMR (CDCl3), (d: ppm): 10.01 (d, J = 8.24 Hz, 1H), 9.505 (d,
J = 8.4 Hz, 1H), 8.74 (s, 1H), 8.56 (m, 2H), 8.42 (s, 1H), 7.60 (s,
4H), 7.51 (m, 4H), 5.05 (m, 2H), 4.47 (m, 2H), 3.20 (s, 1H), 2.57
(m, 4H), 2.16–1.26 (36 H), 0.87 (t, 3H); 13C NMR (300 MHz CDCl3),
(d: ppm): 163.5, 163.4, 163.4, 163.1, 132.3, 132.1, 131.9, 131.9,
131.6, 131.5, 128.1, 127.7, 54.2, 54.1, 31.9, 29.7, 29.6, 29.4, 29.3,
29.2, 29.1, 26.6, 26.3, 25.6, 22.7, 14.1; MALDI-TOF MS (m/z): Calcu-
lated: 962.8; Found: 962.
4.1.5. N,N-dicyclohexyl-1-dodecyl-7-(4-ethynylbenzene)perylene-
3,4,9,10-tetracarboxydiimide (4)
A mixture of 1 (38 mg, 0.05 mmol), CuI (2 mg, 5
lL), Pd(PPh3)4
(7.5 mg, 6 L), iodo-benzene (12.3 mg, 0.06 mmol), toluene (5 mL),
l
and triethylamine (1 mL) was heated to 50 °C at kept at this tem-
perature for about 1 h. Then the solvents were evaporated under
reduced pressure. The residue was column chromatographied on
silica gel with chloroform as eluent. Compound 4 was collected
as red powder. Yield: 12.1 mg, (58%). 1H NMR (CDCl3), (d: ppm):
d 10.03 (d, J = 8.2 Hz, 1H), 9.46 (d, J = 8.4 Hz, 1H), 8.73 (s, 1H),
8.52 (m, 2H), 8.38 (s, 1H), 7.64 (m, 2H), 7.46 (m, 3H), 5.04 (m,
2H), 4.44 (m, 2H), 2.59 (m, 4H), 2.16–1.26 (m, 36H), 0.85 (t, 3H);
13C NMR (300 MHz CDCl3), (d: ppm): 163.6, 163.6, 163.5, 163.2,
157.4, 137.0, 133.9, 133.7, 133.1, 131.8, 130.8, 129.4, 128.8,
128.3, 128.2, 127.7, 127.5, 127.3, 127.1, 124.3, 123.3, 123.2,
122.4, 121.9, 121.7, 119.9, 118.4, 117.4, 97.8, 91.3, 54.2, 54.0,
31.9, 29.7, 29.6, 29.4, 29.4, 29.3, 29.2, 29.1, 26.6, 26.3, 25.5, 22.7,
14.1; MALDI-TOF MS (m/z): Calculated: 839.1; Found: 838.
Acknowledgements
Financial support from the Natural Science Foundation of China
(Grant Nos. 20640420467, 20771066, 20571049), Ministry of Edu-
cation of China, Shandong University, is gratefully acknowledged.
References
[1] H.E. Katz, Z. Bao, S.L. Gilat, Acc. Chem. Res. 34 (2001) 359–369.
[2] F. Würthner, Angew. Chem. Int. ED. 40 (2001) 1037–1039.
[3] M.A. Angadi, D. Gosztola, M.R. Wasielewski, Mater. Sci. Eng. B 63 (1999) 191–
194.
[4] P. Ranke, I. Bleyl, J. Simmerer, D. Haarer, A. Bacher, H.W. Schmidt, Appl. Phys.
Lett. 71 (1997) 1332–1334.
[5] K.Y. Law, Chem. Rev. 93 (1993) 449–486.
[6] B.A. Gregg, R.A. Cormier, J. Am. Chem. Soc. 123 (2001) 7959–7960.
[7] A.J. Breeze, A. Salomon, D.S. Ginley, B.A. Gregg, H. Tillmann, H.H. Horhold, Appl.
Phys. Lett. 81 (2002) 3085–3087.
[8] R.T. Hayes, M.R. Wasielewski, D. Gosztola, J. Am. Chem. Soc. 122 (2000) 5563–
5567.
[9] W.B. Davis, W.A. Svec, M.A. Ratner, M.R. Wasielewski, Nature 396 (1998) 60–
63.
[10] F. Hippiu, F. Schlosser, J. Am. Chem. Soc. 128 (2006) 3870–3871.
[11] K. Tornizaki, R.S.R.S. Loewe, C. Kirmaier, J.K. Schwartz, J.L. Retsek, D.F. Bocian, J.
Org. Chem. 67 (2002) 6519–6531.
[12] A. Hagfeldt, M. Gratzel, Acc. Chem. Res. 33 (2000) 269–277.
[13] K. Balakrishman, A. Datar, T. Naddo, J. Huang, R. Oitker, M. Yen, J. Zhao, L.
Zhang, J. Am. Chem. Soc. 128 (2006) 7390–7398.
[14] K. Balakrishnan, A. Datar, R. Oitker, H. Chen, J. Zuo, L. Zang, J. Am. Chem. Soc.
127 (2005) 10496–10497.
[15] J. Locklin, D. Li, S.C.B. Mannsfeld, E. Borken, H. Meng, R. Advincula, Z. Bao,
Chem. Mater. 17 (2005) 3366–3374.
[16] Z. Chen, M.G. Debije, T. Debaerdemaeker, P. Osswald, F. Würthner,
Chemphychem 5 (2004) 137–140.
4.1.6. N,N-dicyclohexyl-1-dodecyloxy-7-(1-ethynyl-4-(2-
phenylethynyl)benzene)perylene-3,4,9,10-tetracarboxydiimide (5)
Following the similar procedure of 4, with 2 as starting material,
compound 5 was prepared. Yield: 12.4 mg, (53%). 1H NMR (CDCl3),
(d: ppm): 9.77 (d, J = 8.2 Hz, 1H), 9.24 (d, 1H), 8.47 (s, 1H), 8.35 (m,
2H), 8.22 (s, 1H), 7.59 (m, 4H), 7.38 (m, 5H), 5.02 (m, 2H), 4.32 (m,
2H), 2.56 (m, 4H), 2.17–1.27 (m, 36H), 0.85 (t, 3H); 13C NMR
(300 MHz CDCl3), (d: ppm): 163.6, 163.5, 163.5, 163.2, 157.4,
136.9, 134.0, 133.7, 133.1, 131.9, 131.8, 131.6, 130.8, 128.6,
128.4, 128.3, 128.2, 127.7, 127.5, 127.4, 127.1, 124.5, 124.3,
123.4, 123.3, 122.9, 122.0, 121.9, 121.7, 119.9, 118.1, 117.4, 97.4,
93.0, 88.9, 86.3, 70.6, 54.2, 54.1, 31.9, 29.7, 29.6, 29.4, 29.4, 29.2,
29.1, 26.6, 26.3, 25.5, 22.7, 14.1; MALDI-TOF MS (m/z): Calculated:
939.2; Found: 938.
[17] C.C. Chao, M.K. Leung, Y.O. Su, K.Y. Chiu, T.H. Liu, S.J. Shieh, S.C. Lin, J. Org.
Chem. 70 (2005) 4323–4331.
[18] S. Becker, A. Böhm, K. Müllen, J. Chem. Eur. 6 (2000) 3984–3990.
[19] H. Langhals, P. Blanke, Dyes Pigment 59 (2003) 109–116.
[20] M. Sandrai, L. Hadel, R.R. Sauers, S. Husain, K. Krogh-Jespersen, J. Phys. Chem.
96 (1992) 7988–7996.
[21] C. Ego, D. Marsitzkey, S. Becker, J. Zhang, A.C. Grimsdale, J.D. MacKenzie, C.
Silva, R.H. Friend, J. Am. Chem. Soc. 125 (2003) 437–443.
[22] W. Qiu, S. Chen, X. Sun, Y. Liu, D. Zhu, Org. Lett. 8 (2006) 867–870.
[23] J.M. Serin, D.W. Brousmiche, J.M.J. Frechet, J. Am. Chem. Soc. 124 (2002)
11848–11849.
[24] J.M. Giaimo, A.V. Gusev, M.R. Wasielewski, J. Am. Chem. Soc. 124 (2002) 8530–
8531.
[25] B.A. Jones, M.J. Ahrens, M.H. Yoon, A. Facchetti, T.J. Marks, M.R. Wasielewski,
Angew. Chem. Int. Ed. 43 (2004) 6363–6366.
[26] M.J. Ahrens, M.J. Fuller, M.R. Wasilewski, Chem. Mater. 15 (2003) 2684–2686.
[27] C. Zhao, Y. Zhang, R. Li, R. Li, J. Jiang, J. Org. Chem. 72 (2007) 2402–2410.
[28] R. Raramasivan, C. Revital, S. Elijah, J.W. Linda, R. Boris, J. Org. Chem. 72 (2007)
5973–5979.
[29] F. Hadicke, F. Graser, Acta Crystallogr. Sect. C 42 (1986) 189–195.
[30] W. Su, Y. Zhang, C. Zhao, X. Li, J. Jiang, ChemPhysChem 8 (2007) 1857–1862.
[31] A. Dreuw, M. Head-Gordon, Chem. Rev. 105 (2005) 4009–4037.
4.1.7. N,N-dicyclohexyl-1-dodecyloxy-7-(1-(2-(4-ethynylphenyl)ethy-
nyl)-4-(2-phenylethynyl)benzene)perylene-3,4,9,10-tetracarboxy-
diimide (6)
Following the similar procedure of 4, with 3 as starting material,
compound 6 was prepared. Yield: 8.8 mg, (50%). 1H NMR (CDCl3),
(d: ppm): 9.87 (d, J = 8.2 Hz, 1H), 9.34 (d, 1H), 9.57 (s, 1H), 8.43
(m, 2H), 8.29 (s, 1H), 7.53 (m, 9H), 7.35 (m, 4H), 5.02 (m, 2H),
4.38 (m,2H), 2.60 (m, 4H), 2.16–1.27 (m, 36H), 0.86 (t, 3H); 13C
NMR (300 MHz CDCl3), (d: ppm): 163.4, 163.4, 163.3, 163.0,
157.3, 136.8, 133.7, 133.5, 132.8, 131.9, 131.7, 130.7, 128.5,
128.4, 128.0, 127.9, 127.5, 127.4, 127.1, 126.9, 124.3, 123.6,
123.3, 123.1, 122.7, 122.1, 121.8, 121.5, 119.6, 117.8, 117.2, 97.6,
93.2, 92.0, 91.5, 90.8, 89.1, 77.4, 76.9, 76.6, 70.5, 54.2, 54.1, 31.9,
29.7, 29.7, 29.5, 29.4, 29.3, 29.2, 29.1, 26.7, 26.3, 25.6, 22.7, 14.1;
MALDI-TOF MS (m/z): Calculated: 1039.3; Found: 1038.