The Journal of Physical Chemistry C
Article
(7) Zheng, M.; Diner, B. A. Solution Redox Chemistry of Carbon
Nanotubes. J. Am. Chem. Soc. 2004, 126, 15490−1494.
(8) Cathcart, H.; Nicolosi, V.; Hughes, J. M.; Blau, W. J.; Kelly, J.
M.; Quinn, S. J.; Coleman, J. N. Ordered DNS Wrapping Switches on
Luminescence in Single-Walled Nanotube Dispersions. J. Am. Chem.
Soc. 2008, 130, 12734−12744.
(9) Dukovic, G.; White, B. E.; Zhou, Z.; Wang, F.; Jockusch, S.;
Steigerwald, M. L.; Heinz, T. F.; Friesner, R. A.; Turro, N. J.; Brus, L.
E. Reversible Surface Oxidation and Efficient Luminescence
Quenching in Semiconductor Single-Wall Carbon Nanotubes. J.
Am. Chem. Soc. 2004, 126, 15269−15276.
(10) Duque, J. G.; Densmore, C. G.; Doorn, S. K. Saturation of
Surfactant Structure at the Single-Walled Carbon Nanotube Surface. J.
Am. Chem. Soc. 2010, 132, 16165−16175.
(11) Duque, J. G.; Oudjedi, L.; Crochet, J. J.; Tretiak, S.; Lounis, B.;
Doorn, S. K.; Cognet, L. Mechanism of Electrolyte-Induced
Brightening in Single-Wall Carbon Nanotubes. J. Am. Chem. Soc.
2013, 135, 3379−3382.
(12) Niyogi, S.; Densmore, C. G.; Doorn, S. K. Electrolyte Tuning of
Surfactant Interfacial Behavior for Enhanced Density-Based Separa-
tions of Single-Walled Carbon Nanotubes. J. Am. Chem. Soc. 2009,
131, 1144−1153.
(13) Hirana, Y.; Tanaka, Y.; Niidome, Y.; Nakashima, N. Strong
Micro-Dielectric Environment Effect on the Band Gaps of (n,m)
Single-Walled Carbon Nanotubes. J. Am. Chem. Soc. 2010, 132,
13072−13077.
(14) Larsen, B. A.; Deria, P.; Holt, J. M.; Stanton, I. N.; Heben, M.
J.; Therien, M. J.; Blackburn, J. L. Effect of Solvent Polarity and
Electrophilicity on Quantum Yields and Solvatochromic Shifts of
Single-Walled Carbon Nanotube Photoluminescence. J. Am. Chem.
Soc. 2012, 134, 12485−12491.
(15) Wang, R. K.; Chen, W.-C.; Campos, D. K.; Ziegler, K. J.
Swelling the Micelle Core Surrounding Single-Walled Carbon
Nnaotubes with Water-Immiscible Organic Solvents. J. Am. Chem.
Soc. 2008, 130, 16330−16337.
(16) Hirano, A.; Tanaka, T.; Urabe, Y.; Kataura, H. pH- and Solute-
Dependent Adsorption of Single-Wall Carbon Nanotubes onto
Hydrogels: Mechanistic Insights into the Metal/Semiconductor
Separation. ACS Nano 2013, 7, 10285−10295.
(17) Wang, L.; Li, Y. Selective Band Structure Modulation of Single-
Walled Carbon Nanotubes in Ionic Liquids. J. Am. Chem. Soc. 2009,
131, 5364−5365.
(18) Salem, D. P.; Gong, X.; Liu, A. T.; Koman, V. B.; Dong, J.;
Strano, M. S. Ionic Strength-Mediated Phase Transitions of Surface-
Adsorbed DNA on Single-Walled Carbon Nanotubes. J. Am. Chem.
Soc. 2017, 139, 16791−16802.
(19) Ding, J.; Li, Z.; Lefebvre, J.; Du, X.; Malenfant, R. L.
Mechanistic Consideration of pH Effect on the Enrichment of
Semiconducting SWCNTs by Conjugated Polymer Extraction. J. Phys.
Chem. C 2016, 120, 21946−21954.
(20) Nakayama-Ratchford, N.; Bangsaruntip, S.; Sun, X.; Welsher,
K.; Dai, H. Noncovalent Functionalization of Carbon Nanotubes by
Fluorescein-Polyethylene Glycol: Supramolecular Conjugates with
pH-Dependent Absorbance and Fluorescence. J. Am. Chem. Soc. 2007,
129, 2448−2449.
(21) Strano, M. S.; Huffman, C. B.; Moore, V. C.; O’Connell, M. J.;
Haroz, E. H.; Hubbard, J.; Miller, M.; Rialon, K.; Kittrell, C.; Ramesh,
S.; et al. Reversible, band-Gap-Selective Protonation of Single-Walled
Carbon Nanotubes in Solution. J. Phys. Chem. B 2003, 107, 6979−
6985.
(24) Moonoosawmy, K. R.; Kruse, P. Cause and Consequence of
Carbon Nanotube Doping in Water and Aqueous Media. J. Am. Chem.
Soc. 2010, 132, 1572−1577.
(25) Rohlfing, M. Redshift of Excitons in Carbon Nanotubes Caused
by the Environment Polarizability. Phys. Rev. Lett. 2012, 108, 087402.
(26) Berger, S.; Iglesias, F.; Bonnet, P.; Voisin, C.; Cassabois, G.;
Lauret, J.-S.; Delalande, C.; Roussignol, P. Optical Properties of
Carbon Nanotubes in a Composite Material: the Role of Dielectric
Screening and Thermal Expansion. J. Appl. Phys. 2009, 105, 094323.
(27) Hirano, A.; Tanaka, T.; Kataura, H. Thermodynamic
Determination of the Metal/Semiconductor Separation of Carbon
Nanotubes Using Hydrogels. ACS Nano 2012, 6, 10195−10205.
(28) Liu, H.; Tanaka, T.; Urabe, Y.; Kataura, H. High-Efficiency
Single-Chirality Separation of Carbon Nanotubes Using Temper-
ature-Controlled Gel Chromatography. Nano Lett. 2013, 13, 1996−
2003.
(29) Moore, V. C.; Strano, M. S.; Haroz, E. H.; Hauge, R. H.;
Smalley, R. E.; Schmidt, J.; Talmon, Y. Individually Suspended Single-
Walled Carbon Nanotubes in Various Surfactants. Nano Lett. 2003, 3,
1379−1382.
(30) Choi, J. H.; Strano, M. S. Solvatochromism in Single-Walled
Carbon Nanotubes. Appl. Phys. Lett. 2007, 90, 223114.
(31) Strano, M. S.; Moore, V. C.; Miller, M. K.; Allen, M. J.; Haroz,
E. H.; Kittrell, C.; Hauge, R. H.; Smalley, R. E. The Role of Surfactant
Adsorption During Ultrasonication in the Dispersion of Single-Walled
Carbon Nanotubes. J. Nanosci. Nanotechnol. 2003, 3, 81−86.
(32) Silvera-Batista, C. A.; Wang, R. K.; Weinberg, P.; Ziegler, K. J.
Solvatochromic Shifts of Single-Walled Carbon Nanotubes in
Nonpolar Microenvironments. Phys. Chem. Chem. Phys. 2010, 12,
6990−6998.
(33) Zhou, L. L.; Liu, X.; Li, H. P. The Release of Retained Single-
Walled Carbon Nanotubes in Gels. Langmuir 2018, 34, 12224−
12232.
(34) McRae, E. G. Theory of Solvent Effects on Molecular
Electronic Spectra. Frequency Shifts. J. Phys. Chem. 1957, 61, 562−
572.
(35) Nagae, H. Theory of Solvent Effects on Electronic Absorption
Spectra of Rodlike or Disklike Solute Molecules: Frequency Shifts. J.
Chem. Phys. 1997, 106, 5159−5170.
(36) Blanch, A. J.; Quinton, J. S.; Shapter, J. G. The Role of Sodium
Dodecyl Sulfate Concentration in the Separation of Carbon
Nanotubes Using Gel Chromatography. Carbon 2013, 60, 471−480.
(37) Blanch, A. J.; Shapter, J. G. Surfactant Concentration
Dependent Spectral Effects of Oxygen and Depletion Interactions
in Sodium Dodecyl Sulfate Dispersions of Carbon Nanotubes. J. Phys.
Chem. B 2014, 118, 6288−6296.
(38) Ju, S.-Y.; Kopcha, W. P.; Papadimitrakopoulos, F. Brightly
Fluorescent Single-Walled Carbon nanotubes via An Oxygen-
Excluding Surfactant Organization. Science 2009, 323, 1319−1323.
(39) Li, H. P.; Liu, H. Y.; Tang, Y. F.; Guo, W. M.; Zhou, L. L.;
Smolinski, N. Electronically Pure Semiconducting Single-Walled
Carbon Nanotube for Large Scale Electronic Devices. ACS Appl.
Mater. Interfaces 2016, 8, 20527−20533.
(40) Li, H. P.; Tang, Y. F.; Guo, W. M.; Liu, H. Y.; Zhou, L. L.;
Smolinski, N. Polyfluorinated Electrolyte for Fully Printed Carbon
Nanotube Electronics. Adv. Funct. Mater. 2016, 26, 6914−6920.
(42) Chakraborty, S.; Shukla, D.; Jain, A.; Mishra, B.; Singh, S.
Assessment of Solubilization Characteristics of Different Surfactants
for Carvedilol Phosphate As A Function of pH. J. Colloid Interface Sci.
2009, 335, 242−249.
(22) Blackburn, J. L.; McDonald, T. J.; Metzger, W. K.; Engtrakul,
C.; Rumbles, G.; Heben, M. J. Protonation Effects on the Branching
Ratio in Photoexcited Single-Walled Carbon Nanotube Dispersions.
Nano Lett. 2008, 8, 1047−1054.
(23) Wang, D.; Chen, L. Temperature and pH-Responsive Single-
Walled Carbon Nanotube Dispersions. Nano Lett. 2007, 7, 1480−
1484.
(44) Li, H. P.; Zhou, L. L. Visualizing Helical Wrapping of
Semiconducting Single-Walled Carbon Nanotubes by Surfactants and
Their Impacts on Electronic Properties. Chem. Select 2016, 1, 3569−
3572.
2571
J. Phys. Chem. C 2019, 123, 2565−2572