ORGANIC
LETTERS
2010
Vol. 12, No. 3
608-611
Catalytic (Asymmetric) Methylene
Transfer to Aldehydes
Alessandro Piccinini, Sarah A. Kavanagh, Paul B. Connon, and Stephen
J. Connon*
Centre for Synthesis and Chemical Biology, School of Chemistry, UniVersity of Dublin,
Trinity College, Dublin 2, Ireland
Received December 7, 2009
ABSTRACT
An investigation into the poor activity of sulfides as catalysts for sulfonium-ylide-mediated methylene transfer to aldehydes has indicated that
ylide formation is the problematic catalytic cycle step. Alkylation with traditional electrophiles does not proceed with sufficient efficiency to
allow the sulfide to be used catalytically. Methyl triflate rapidly alkylates cyclic thiolanes under mild conditions, allowing their use in efficient
aldehyde epoxidation reactions (in conjunction with phosphazene bases) at loadings as low as 10 mol %.
Over the past 15 years the Corey-Chaykovsky (CC) epoxi-
dation process1 involving the reaction between sulfonium
ylides and aldehydes has evolved into a highly synthetically
useful, catalytic asymmetric methodology.2 The use of
semistabilized ylides such as those derived from the reaction
of either benzyl halides or R-haloesters/amides with chiral
sulfides at catalytic loadings can result in excellent levels of
product enantiomeric excess.3 In stark contrast, however, the
asymmetric synthesis of terminal epoxides via methylene
transfer is characterized by moderate yields and a requirement
for (super)stoichiometric loadings of chiral sulfide cata-
lysts.4,5 For example, the benchmark literature procedures
(Scheme 1) for the asymmetric sulfonium ylide-mediated
formation of styrene oxide (2) from the archetypal substrate
benzaldehyde (1) developed independently by Aggarwal6a,b
and Goodman6c involve the use of 100-200 mol % of the
chiral sulfides 3-4 and produce 2 in ca. 50-60% yield and
<60% ee.7
While it has been (reasonably) proposed that the moderate
levels of stereocontrol observed in these reactions relative
to those involving more stabilized ylides are due to irrevers-
ible betaine formation in the case of the addition of the
methylide to aldehydes,2,8 we found the poor levels of
catalyst activity (high activity and low sulfide loadings are
normal in the corresponding benzylidene transfer reactions
(3) Selected representative examples: (a) Furukawa, N.; Sugihara, Y.;
Fujihara, H. J. Org. Chem. 1989, 54, 4222. (b) Aggarwal, V. K.; Abdel-
Rahman, H.; Jones, R. V. H.; Standen, M. C. H. J. Am. Chem. Soc. 1994,
116, 5973. (c) Aggarwal, V. K.; Ford, J. G.; Thompson, A.; Jones, R. V. H.;
Standen, M. C. H. J. Am. Chem. Soc. 1996, 118, 7004. (d) Zanardi, J.;
Leriverend, C.; Aubert, D.; Julienne, K.; Metzner, P. J. Org. Chem. 2001,
66, 5620. (e) Saito, T.; Akiba, D.; Sakairi, M.; Kanazawa, S. Tetrahedron
Lett. 2001, 42, 57. (f) Winn, C. L.; Bellenie, B. R.; Goodman, J. M.
Tetrahedron Lett. 2002, 43, 5427. (g) Aggarwal, V. K.; Alonso, E.; Bae,
I.; Hynd, G.; Lydon, K. M.; Palmer, M. J.; Patel, M.; Porcelloni, M.;
Richardson, J.; Stenson, R. A.; Studley, J. R.; Vasse, J.-L; Winn, C. L J. Am.
Chem. Soc. 2003, 125, 10926. (h) Davoust, M.; Brie`re, J.-F.; Jaffre`s, P.-
A.; Metzner, P. J. Org. Chem. 2005, 70, 4166. (i) Deng, X.-M.; Cai, P.;
Ye, S.; Sun, X.-L.; Liao, W.-W.; Li, K.; Tang, Y.; Wu, Y.-D.; Dai, L.-X
J. Am. Chem. Soc. 2006, 128, 9730. (j) Davoust, M.; Cantagrel, F.; Metzner,
P.; Brie`re, J.-F. Org. Biomol. Chem. 2008, 6, 1981. (k) Bi, J.; Aggarwal,
V. K. Chem. Commun. 2008, 120.
(1) (a) Johnson, A. W.; LaCount, R. B. J. Am. Chem. Soc. 1961, 83,
417. (b) Corey, E. J.; Chaykovsky, M. J. Am. Chem. Soc. 1962, 84, 867.
(c) Franzen, V.; Driesen, H.-E. Chem. Ber. 1963, 96, 1881. (d) Corey, E.
J; Chaykovsky, M. J. Am. Chem. Soc. 1965, 87, 1353.
(2) Recent reviews: (a) Li, A.-H.; Dai, L.-X.; Aggarwal, V. K. Chem.
ReV. 1997, 97, 2341. (b) Aggarwal, V. K.; Richardson, J. Chem. Commun.
2003, 2644. (c) Aggarwal, V. K.; Winn, C. L. Acc. Chem. Res. 2004, 37,
611. (d) McGarrigle, E. M.; Myers, E. L.; Illa, O.; Shaw, M. A.; Riches,
S. L.; Aggarwal, V. K. Chem. ReV. 2007, 107, 5841.
(4) (a) Trost, B. M.; Hammen, R. F. J. Am. Chem. Soc. 1973, 95, 962.
(b) Bellenie, B. R.; Goodman, J. M. Chem. Commun. 2004, 1076.
(5) Breau, L.; Durst, T. Tetrahedron: Asymmetry 1991, 2, 367.
10.1021/ol902816w 2010 American Chemical Society
Published on Web 01/07/2010