Adam et al.
F IGURE 1. Structures of the sandwich-type polyoxometalate M-POM catalysts and allylic alcohols.
lyze the oxidation of organic substances by hydrogen
peroxide under phase-transfer conditions.11,12 The result-
ing tungsten peroxo complexes, derived from these poly-
oxometalate catalysts, serve as the active oxygen-transfer
agent.13 With regard to the commonly used R-Keggin and
Wells-Dawson POMs, their unfortunate property is that
they do not persist against solvolytic and oxidative
decomposition, especially in the presence of H2O2, as has
been proved by kinetic and spectral studies.2b,13
Recently, the so-called sandwich-type polytungsto-
metalates [WXM2(H2O)2(XW9O34)2]12- with X ) Zn(II) or
Co(II) (Figure 1), initially prepared by Tourne´,14 have
received attention as promising oxidation cata-
lysts.7,8a-c,9b-f,10b These anions contain two B-[XW9O34]12-
truncated Keggin fragments, linked by four coplanar
octahedrally coordinated and close-packed d transition-
metal atoms. Both the heteroatoms in the trivacant
Keggin fragments and the four transition-metal ions in
the central ring may be varied extensively,14 which pro-
vides still unexplored opportunities for the design of new
oxidation catalysts. A definite advantage of the sandwich-
type POMs is their higher resistance toward hydrolysis
as well as oxidative degradation by H2O29c than those of
most common Keggin and Wells-Dawson structures.
A good example of uniquely high catalytic activity in
hydrogen peroxide-mediated oxidations is the Mn(II)-
disubstituted POM, namely [WZnMnII2(ZnW9O34)2]12-
,
which displays high selectivity for the epoxidation of
alkenes and the oxidation of alcohols by 30% H2O2 in a
biphasic system; indeed, hundreds to thousands of cata-
lytic turnovers have been achieved.9b,c Other isostructural
noble-metal [Rh(III), Pd(II), Pt(II), and Ru(III)] disub-
stituted analogues have also been shown to exhibit
activity in alkene and alkane oxidations with H2O2 and
tBuOOH.9d,10b In fact, the ruthenium derivative was found
to be effective in the oxidation of adamantane even by
molecular oxygen.8a-c
Despite this success, conspicuous is the fact that
sandwich-type POMs have not been employed for the
epoxidation of chiral allylic alcohols.15 The chiral allylic
alcohols not only are valuable stereochemical probes for
the elucidation of oxygen-transfer transition structures,16
but also offer the opportunity to test the chemoselectivity
of the oxidation in terms of epoxide versus enone forma-
tion, that is, oxygen transfer to the double bond or oxygen
insertion into the allylic CH bond. In this context,
catalytic systems such as Ti(OiPr)4/TBHP,17 VO(acac)2/
TBHP,18 H2WO4/H2O2,19 methyltrioxorhenium (MTO)/
UHP,20 manganese(salen)/PhIO,21 and iron(porphyrin)/
PhIO,21 and the stoichiometric oxidants DMD22 and
m-CPBA18 have been used in the epoxidation of allylic
(6) (a) Neumann, R. Abu-Gnim, C. J . Chem. Soc., Chem. Commun.
1989, 1324-1325. (b) Neumann, R. Abu-Gnim, C. J . Am. Chem. Soc.
1990, 112, 6025-6031. (c) Steckhan, E.; Kandzia, C. Synlett 1992, 139-
140. (d) Bressan, M.; Morvillo, A.; Romanello, G. J . Mol. Catal. 1992,
77, 283-288.
(7) Neumann, R.; Khenkin, A. M. Chem. Coummn. 1998, 1967-
1968.
(8) (a) Neumann, R.; Khenkin, A. M.; Dahan, M. Angew. Chem., Int.
Ed. Engl. 1995, 34, 1587-1589 (b) Neumann, R.; Dahan, M. Nature
1997, 388, 353-355. (c) Neumann, R.; Dahan, M. J . Am. Chem. Soc.
1998, 120, 11969-11976. (d) Weiner, H.; Finke, R. G. J . Am. Chem.
Soc. 1999, 121, 9831-9842. (e) Khenkin, A. M.; Weiner, V.; Wang, Y.;
Neumann, R. J . Am. Chem. Soc. 2001, 123, 8531-8542. (f) Rhule, J .
T.; Neivert, W. A.; Hardcastle, K. I.; Do, B. T.; Hill, C. L. J . Am. Chem.
Soc. 2001, 123, 12101-12102.
(9) (a) Khenkin, A. M.; Hill, C. L. Mendeleev Commun. 1993, 140-
141. (b) Neumann, R.; Gara, M. J . Am. Chem. Soc. 1994, 116, 5509-
5510. (c) Neumann, R.; Gara, M. J . Am. Chem. Soc. 1995, 117, 5066-
5074. (d) Neumann, R.; Khenkin, A. M. J . Mol. Catal. 1996, 114, 169-
180. (e) Neumann, R.; J uwiler, D. Tetrahedron 1996, 52, 8781-8788.
(f) Neumann, R.; Khenkin, A. M.; J uwiler, D.; Miller, H.; Gara, M. J .
Mol. Catal. 1997, 117, 169-183. (g) Zhang, X.; Chen, Q.; Duncan, D.
C.; Campana, C. F.; Hill, C. L. Inorg. Chem. 1997, 36, 4208-4215. (h).
Bo¨sing, M.; No¨h, A.; Loose, I.; Krebs, B. J . Am. Chem. Soc. 1998, 120,
7252-7259. (i) Mizuno, N.; Nozaki, C. Kiyoto, I.; Misono, M. J . Am.
Chem. Soc. 1998, 120, 9267-9272. (j) Ben-Daniel, R.; Neumann, R.;
Khenkin, A. M. Chem.sEur. J . 2000, 6, 3722-3728. (k) Droege, M.
W.; Finke, R. G. J . Mol. Catal. 1991, 69, 323-338.
(10) (a) Faraj, M.; Hill, C. L. J . Chem. Soc., Chem. Commun. 1987,
1487-1489. (b) Neumann, R.; Khenkin, A. M. Inorg. Chem. 1995, 34,
5753-5760.
(15) Recently, we reported on the oxidation of cyclohexenol, mediated
by Keggin-type POMs, but neither the acyclic alcohols nor their epoxide
products persisted under these conditions: Adam, W.; Herold, M.; Hill,
C. L. Saha-Mo¨ller, C. R. Eur. J . Org. Chem. 2002, 941-946.
(16) Adam, W.; Wirth, T. Acc. Chem. Res. 1999, 32, 703-710.
(17) Adam, W.; Kumar, R.; Reddy, T. I.; Renz, M. Angew. Chem.,
Int. Ed. Engl. 1996, 35, 880-882.
(18) (a) Rossiter, B. E.; Verhoeven, T. R.; Sharpless, K. B. Tetrahe-
dron Lett. 1979, 19, 4733-4736. (b) Sharpless, K. B.; Verhoeven, T.
R. Aldrichimica Acta 1979, 12, 63-74. (c) Adam, W.; Nestler, B.
Tetrahedron Lett. 1993, 34, 611-614.
(19) (a) Prat, D.; Lett, P. Tetrahedron Lett. 1986, 27, 707-710. (b)
Prat, D.; Delpech, B.; Lett, P. Tetrahedron Lett. 1986, 27, 711-714.
(20) (a) Adam, W.; Mitchell, C. M. Angew. Chem., Int. Ed. Engl.
1996, 35, 533-535. (b) Adam, W.; Mitchell, C. M. Saha-Mo¨ller, C. R.
J . Org. Chem. 1999, 64, 3699-3707.
(21) Adam, W.; Stegmann, V. R.; Saha-Mo¨ller, C. R. J . Am. Chem.
Soc. 1999, 121, 1879-1882.
(22) Adam, W.; Smerz, A. K. Tetrahedron 1995, 51, 13039-13044.
(11) (a) Ishii, Y.; Yamawaki, K.; Ura, T.; Yamada. Y.; Yoshida, T.;
Ogawa, M. J . Org. Chem. 1988, 53, 3587-3593. (b) Ishii, Y.; Yoshida,
T.; Yamawaki, K.; Ogawa, M. J . Org. Chem. 1988, 53, 5549-5552. (c)
Sakata, Y.; Ishii, Y. J . Org. Chem. 1991, 56, 6233-6235. (d) Ishii, Y.,
Ogawa, M., Eds. Hydrogen Peroxide Oxidation Catalyzed by Heteropoly
Acids Combined with Cetylpyridinium Chloride; MYU: Tokyo, 1990.
(e) Neumann, R.; Khenkin, A. M. J . Org. Chem. 1994, 59, 7577-7579.
(12) (a) Venturello, C.; Alneri, E.; Ricci, M. J . Org. Chem. 1983, 48,
3831-3833. (b) Venturello, C.; D’Aloisio, R. J . Org. Chem. 1988, 53,
1553-1557. (c) Venturello, C.; Gambaro, M. Synthesis 1989, 295-297.
(13) (a) Aubry, C.; Chottard, G.; Platzer, N.; Bre`gault, J .-M.;
Thouvenot, R.; Chauveau, F.; Huet, A.; Ledon, H. Inorg. Chem. 1991,
30, 4409-4415. (b) Duncan, D. C.; Chambers, R. C.; Hecht, E.; Hill,
C. L. J . Am. Chem. Soc. 1995, 117, 681-691.
(14) Tourne´, C. M.; Tourne´, G. F.; Zonnevijlle, F. J . Chem. Soc.,
Dalton. Trans. 1991, 143-155.
1722 J . Org. Chem., Vol. 68, No. 5, 2003