LETTER
Recipe for the Chlorination of Enamides and Enecarbamates
2963
Me
Cl Si Cl
Cl
R1
Me
R2
Me2S + MeSiCl2OH
R1
Cl
Cl
Cbz
Cbz
H
Si
N+
O
S
N
NHCbz
••
Me
Cl
S
O
S+
O
Si
Cl
H
Cl–
R1
– Cl–
Cl
R2
R2
A2
A3
NHCbz
R2
NHCbz
Cl
+
R1
R1
R2
Cl
E-isomer (minor)
Z-isomer (major)
Scheme 2 The proposed mechanism of the chlorination with MeSiCl3–DMSO
(8) (a) Torrini, I.; Pagani Zecchini, G.; Paglialunga Paradasi, M.
Synth.Commun. 1989, 19, 695. (b) Richards, K. D.; Kolar,
A. J.; Srinivasan, A.; Stephenson, R. W.; Olsen, R. K. J. Org.
Chem. 1976, 41, 3674. (c) Kolar, A. J.; Olaen, R. K. J. Org.
Chem. 1980, 45, 3246. (d) Danion-Bougot, R.; Dauion, D.;
Francis, G. Tetrahedron Lett. 1990, 31, 3739.
(9) (a) Coleman, R. S.; Carpenter, A. J. J. Org. Chem. 1993, 58,
4452. (b) Miossec, B.; Danion-Bougot, R.; Danion, D.
Synthesis 1994, 1171.
(10) Silva, N. O.; Abreu, A. S.; Ferreira, P. M. T.; Monteiro,
L. S.; Queiroz, M.-J. R. P. Eur. J. Org. Chem. 2002, 2524.
(11) For our recent work on Lewis base catalyzed
hydrosilylation, see: (a) Wang, Z.; Ye, X.; Wei, S.; Wu, P.;
Zhang, A.; Sun, J. Org. Lett. 2006, 8, 999. (b) Wang, Z.;
Cheng, M.; Wu, P.; Wei, S.; Sun, J. Org. Lett. 2006, 8, 3045.
(c) Pei, D.; Wang, Z.; Zhang, Y.; Wei, S.; Sun, J. Org. Lett.
2006, 8, 5913. (d) Zhou, L.; Wang, Z.; Wei, S.; Sun, J.
Chem. Commun. 2007, 2977. (e) Wang, Z.; Wei, S.; Wang,
C.; Sun, J. Tetrahedron: Asymmetry 2007, 18, 705. (f) Pei,
D.; Zhang, Y.; Wei, S.; Wang, M.; Sun, J. Adv. Synth. Catal.
2008, 350, 619. (g) Wang, C.; Wu, X.; Zhou, L.; Sun, J.
Chem. Eur. J. 2008, 14, 8789.
the b-chloro enamides/enecarbamate product, which fa-
vors the formation of the thermodynamically more stable
Z-isomer.16,17
In summary, we have developed a highly efficient method
for the chlorination of enamides and enecarbamates with
MeSiCl3–DMSO, which allows for facile one-pot produc-
tion of b-chloro enamide and enecarbamate products un-
der mild conditions in high yields and with high
stereoselectivities. This method is easy to operate and
suitable for both cyclic and acyclic substrates.
Supporting Information for this article is available online at
Acknowledgment
We are grateful for financial support from the National Natural Sci-
ence Foundation of China (20672107 and 20732006).
(12) General Procedure for the Chlorination of Enamides
and Enecarbamtes
References and Notes
To a solution of enamide or enecarbamte (0.1 mmol) in
CH2Cl2 (1 mL) was added DMSO (0.15 mmol) and
chlorosilane (0.2 mmol). After stirring at r.t. for 1 h, the
reaction solution was quenched by sat. aq NaHCO3 (1 mL).
The resulting mixture was extracted with EtOAc (3 × 5 mL).
The combined organic layer was washed with brine (3 × 5
mL), dried over MgSO4, and concentrated under reduced
pressure. The residue was purified through column
chromatography on silica gel to give the desired b-
chlorinated enamide or enecarbamate.
(1) (a) Ashley, E. R.; Cruz, E. G.; Stoltz, B. M. J. Am. Chem.
Soc. 2003, 125, 15000. (b) Roff, G. J.; Lloyd, R. C.; Turner,
N. J. J. Am. Chem. Soc. 2004, 126, 4098. (c) Crawley, M.
L.; Goljer, I.; Jenkins, D. J.; Mehlmann, J. F.; Nogle, L.;
Dooley, R.; Mahaney, P. E. Org. Lett. 2006, 8, 5837.
(2) (a) Collier, N. C.; Patel, I.; Taylor, R. J. K. Tetrahedron Lett.
2001, 42, 5953. (b) Aitken, D. J.; Faure, S.; Roche, S.
Tetrahedron Lett. 2003, 44, 8827. (c) Singh, J.; Kronenthal,
D. R.; Schwinden, M.; Godfrey, J. D.; Fox, R.; Vawter, E. J.;
Zhang, B.; Kissick, T. P.; Patel, B.; Mneimne, O.; Humora,
M.; Papaioannou, C. G.; Szymanski, W.; Wong, M. K. Y.;
Chen, C. K.; Heikes, J. E.; DiMarco, J. D.; Qiu, J.;
Deshpande, R. P.; Gougoutas, J. Z.; Mueller, R. H. Org. Lett.
2003, 5, 3155.
(3) Cernak, T. A.; Gleason, J. L. J. Org. Chem. 2008, 73, 102.
(4) Zhou, H.; van der Donk, W. A. Org. Lett. 2001, 3, 593.
(5) Hoerrner, R. S.; Askin, D.; Volante, R. P.; Reider, P. J.
Tetrahedron Lett. 1998, 39, 3455.
(6) (a) Miossec, B.; Danion-Bougot, R.; Danion, D. Synthesis
1994, 1171. (b) Yamada, M.; Nakao, K.; Fukui, T.; Nunami,
K. Tetrahedron 1996, 52, 5751.
(13) Spectroscopic Data for (Z)-2b and 2h
Compound (Z)-2b: 1H NMR (300 MHz, CDCl3): d = 7.40–
7.30 (m, 8 H), 7.20 (s, 2 H), 6.70 (s, 1 H), 5.00 (s, 2 H), 2.09
(s, 3 H). 13C NMR (75 MHz, CDCl3): d = 153.3, 135.8,
135.0, 131.5, 128.9, 128.4, 128.2, 128.1, 128.0, 118.6,
67.1, 21.9; mp 80–82 °C. ESI-HRMS: m/z calcd for
C17H16ClNO2Na: 324.0767; found: 324.0762.
Compound 2h: 1H NMR (300 MHz, CDCl3): d = 7.24–7.11
(m, 4 H), 6.06 (s, 1 H), 4.19 (q, J = 7.1 Hz, 2 H), 2.96 (t,
J = 8.0 Hz, 2 H), 2.72 (t, J = 8.0 Hz, 2 H), 1.28 (t, J = 5.7 Hz,
3 H). 13C NMR (75 MHz, CDCl3): d = 154.4, 134.1, 131.6,
128.9, 127.9, 127.5, 127.3, 126.5, 122.9, 61.6, 31.4, 28.3,
14.4; mp 175–178 °C. ESI-HRMS: m/z calcd for
(7) (a) Das, J.; Reid, J. A.; Kronenthal, D. R.; Singh, J.;
Panaegrau, P. D.; Mueller, R. H. Tetrahedron Lett. 1992, 33,
7835. (b) Bland, J.; Shah, A.; Bortolusei, A.; Stammer, C. H.
J. Org. Chem. 1988, 53, 992.
C13H14ClNO2Na: 274.0611; found: 274.0605.
(14) Numata, T.; Togo, H.; Oae, S. Chem. Lett. 1979, 329.
(15) It should be noted that the hydrogen bonding in A2 may not
be very important since an N-methylated substrate 1l
(Figure 1) was also found to undergo smooth chlorination
Synlett 2009, No. 18, 2961–2964 © Thieme Stuttgart · New York