LETTER
Synthesis of Chromene-Fused Pyrido[3,2-d]pyrimidines
2577
(4) De Clercq, E.; Beraaerts, R. J. Biomol. Chem. 1987, 262,
14905.
(5) Brown, J. D. In Comprehensive Heterocyclic Chemistry,
Vol. 3; Katritzky, A. R.; Rees, C. W., Eds.; Pergamon:
Oxford, 1984, 57.
(6) Lunt, E. In Comprehensive Heterocyclic Chemistry, Vol. 4;
Barton, D.; Ollis, W. D., Eds.; Pergamon: Oxford, 1974,
493.
(7) Huber, B. S.; Valenti, B. F. J. Med. Chem. 1968, 11, 708.
(8) (a) Althius, T. H.; Moore, P. F.; Hess, H. J. J. Med. Chem.
1979, 22, 44. (b) Althius, T. H.; Kasin, S. B.; Czuba, L. J.;
Moore, P. F.; Hess, H. J. J. Med. Chem. 1980, 23, 262.
(9) Noda, K.; Nakagawa, A.; Motomura, T.; Miyata, S.; Ide, H.
JP 50/82094 (75/82094), 1975; Chem. Abstr. 1975, 83,
193376.
(10) Cowart, M.; Lee, C. Bioorg. Med. Chem. Lett. 2001, 11, 83.
(11) Rosowsky, A.; Chen, H. J. Org. Chem. 2001, 66, 7522.
(12) (a) Pindur, U.; Lutz, G.; Otto, C. Chem. Rev. 1993, 93, 741.
(b) Corey, E. J. Angew. Chem. Int. Ed. 2002, 41, 1650.
(c) Nicolaou, K. C.; Snyder, S. A.; Montagnon, T.;
Vassilikogiannakis, G. Angew. Chem. Int. Ed. 2002, 41,
1668.
The optimized reaction conditions were used to examine
aza-hetero-Diels–Alder reactions of 3 with several O-pro-
pargylated salicylaldehydes (2a–g). The results are sum-
marized in Table 2. Reaction of 3 with one equivalent of
2b in toluene under refluxing conditions using 10 mol%
BF3·OEt2 gave the product 4b in 78% yield (entry 2).
When the same reaction was carried out with 2c and 2d,
the desired products 4c and 4d were obtained in 75% and
79% yields, respectively (entry 3, 4). The reaction of 3
with 2e afforded the product 4e in 71% yield (entry 5).
Similar treatment of 2f and 2g with 3 under the same re-
action conditions afforded the products 4f and 4g in 77%
and 81% yields, respectively (entry 6 and 7). The struc-
tures of the products were determined from their elemen-
tal analyses and spectroscopic data. The characteristic
1
signals for 4a–g in the H NMR spectra are a singlet for
the OCH2 protons between d = 5.21–5.45 ppm followed
closely by a singlet at d = 7.30 ppm for one aromatic pro-
ton of the pyridine ring.
(13) (a) For an introduction to heterodienophiles, see: Weinreb,
S. M. Comprehensive Organic Synthesis, Vol. 5; Trost,
B. M.; Fleming, I.; Paquette, L. A., Eds.; Pergamon Press:
Oxford, 1991, Chap. 4.2, 401. (b) For an overview of
heterodienes, see: Boger, D. L. Comprehensive Organic
Synthesis, Vol. 5; Trost, B. M.; Fleming, I.; Paquette, L. A.,
Eds.; Pergamon Press: Oxford, 1991, Chap. 4.3, 451.
(14) Carruthers, W. Cycloaddition Reactions in Organic
Synthesis; Pergamon Press: Oxford, 1990.
(15) Selected review articles: (a) Tietze, L. F.; Kettschau, G.
Top. Curr. Chem. 1997, 189, 1. (b) Boger, D. L.; Weinreb,
S. M. Hetero Diels–Alder Methodology in Organic
Synthesis; Academic Press: New York, 1987.
(16) Asymmetric hetero-Diels–Alder reactions of 1-azadienes:
(a) Beaudegnies, R.; Ghosez, L. Tetrahedron: Asymmetry
1994, 5, 557. (b) Waldner, A. Tetrahedron Lett. 1989, 30,
3061.
(17) Boger, D. L.; Weinreb, S. N. Hetero Diels–Alder
Methodology in Organic Synthesis; Academic Press: San
Diego, 1987.
Recently, Ramesh and co-workers reported the synthesis
of chromenoquinolines under copper and Lewis acid ca-
talysis the aza-Diels–Alder reaction of unactivated
alkynes.28 There also report of the synthesis of
chromenoacridines by intramolecular aza-Diels–Alder re-
action of alkene-tethered chromene-3-carboxaldehyde
with various aromatic amines. However, there is no such
report of aza-Diels–Alder reaction of unactivated alkynes
in the absence of copper catalyst. Our report is the first ex-
ample of aza-Diels–Alder reaction of unactivated alkynes
with any heterocyclic amine and in the absence of any
copper catalyst.
In conclusion we have demonstrated a novel and practical
method for the synthesis of chromene-fused pyrido[3,2-
d]pyrimidine derivatives by aza-Diels–Alder reaction of
unactivated alkynes with 5-amino-1,3-dimethyluracil.
The methodology is simple, efficient, high yielding, and
requires only single-step operation with shorter reaction
time.
(18) Hattori, K.; Yamamoto, H. J. Org. Chem. 1992, 57, 3264.
(19) (a) Kobayashi, S.; Komiyama, S.; Ishitani, H. Angew. Chem.
Int. Ed. 1998, 37, 979. (b) Kobayashi, S.; Kusakabe, K.;
Komiyama, S.; Ishitani, H. J. Org. Chem. 1999, 64, 4220.
(c) Kobayashi, S.; Kusakabe, K.; Ishitani, H. Org. Lett.
2000, 2, 1225. (d) Yamashita, Y.; Mizuki, Y.; Kobayashi, S.
Tetrahedron Lett. 2005, 46, 1803.
Supporting Information for this article is available online at
(20) Josephsohn, N. S.; Snapper, M. L.; Hoveyda, A. H. J. Am.
Chem. Soc. 2003, 125, 4018.
(21) Mancheno, O. G.; Arrayas, R. G.; Carretero, J. C. J. Am.
Chem. Soc. 2004, 126, 456.
(22) (a) Yao, S.; Johannsen, M.; Hazell, R. G.; Jørgensen, K. A.
Angew. Chem. Int. Ed. 1998, 37, 3121. (b) Yao, S.; Saaby,
S.; Hazell, R. G.; Jørgensen, K. A. Chem. Eur. J. 2000, 6,
2435.
(23) (a) Akiyama, T.; Itoh, J.; Fuchibe, K. Angew. Chem. Int. Ed.
2006, 45, 4796. (b) Akiyama, T.; Tamura, Y.; Itoh, J.;
Morita, H.; Fuchibe, K. Synlett 2006, 141.
Acknowledgment
We thank CSIR (New Delhi) and DST (New Delhi) for financial as-
sistance. Two of us (S.P. and S.G.) are grateful to CSIR (New
Delhi) for their Research Fellowships. We also thank the DST (New
Delhi) for providing Bruker NMR spectrometer (400 MHz) and
Perkin-Elmer CHN analyzer UV-VIS spectrometer and Perkin-
Elmer FT-IR under FIST programme.
References and Notes
(24) Majumdar, K. C.; Sinha, B.; Maji, P. K.; Chattopadhyay,
S. K. Tetrahedron 2009, 65, 2751.
(1) Cheng, C. C. Prog. Med. Chem. 1969, 6, 67.
(2) Scott McNair, D. B.; Ulbrient, T. L. V.; Rogers, M. L.; Chu,
E.; Rose, C. Cancer Res. 1959, 19, 15.
(25) (a) Majumdar, K. C.; Taher, A.; Ray, K. Tetrahedron Lett.
2009, 50, 3889. (b) Majumdar, K. C.; Taher, A.; Ponra, S.
Tetrahedron Lett. 2010, 51, 2297. (c) Majumdar, K. C.;
Taher, A.; Ponra, S. Tetrahedron Lett. 2010, 51, 147.
(3) Sankyo Ltd, Ube Industries Ltd. JP 59,36,667, 1984; Chem.
Abstr. 1984, 101, 110939z.
Synlett 2010, No. 17, 2575–2578 © Thieme Stuttgart · New York