(20 mM) yielded a single peak (22 427 Da, Fig. 3A) corresponding
to the expected mass of LasR-LBD (22 430 Da), the experiment
in which LasR was expressed in the presence of probe 2 (20 mM)
resulted in an additional peak with a mass difference of 292 Da
(Fig. 3B, expected difference: 290 Da). In a third experiment in
which LasR was expressed in the presence of both C12 and 2
(20 mM each) the additional peak had disappeared (Fig. 3C),
showing that 2 competes with C12 for the same binding site,
albeit with lower affinity. From these experiments it follows that
under the crosslinking conditions a significant fraction of LasR is
labeled covalently and specifically.
This work was supported by the Human Frontier Science
Program (Young Investigator Grant RGY0072/2007, BPK and
MMM), the National Institutes of Health (AI079436, VVK), and
by the US–Israel Binational Science Foundation (Startup Grant
2006287, MMM). We thank Dr R. A. Ulevitch for valuable
insights and support, Dr K. D. Janda and Dr G. F. Kaufmann
for helpful discussions, and Dr M. J. Bottomley, Dr D. A. Hogan
and Dr W. J. Quax for bacterial strains and plasmids.
Notes and references
1 J. Engebrecht, K. Nealson and M. Silverman, Cell, 1983, 32,
773–781.
As the interaction between C12 and LasR is highly specific
and small changes in the structure of C12 have been reported
to lead to a significant loss in activity of C12 analogs, the
specific labeling of LasR by probe 2 as observed in our
experiments is encouraging in our attempts to isolate and
identify putative receptors in eukaryotes that bind C12. We
are currently using probe 2 in pursuing this target. As the exact
location of the diazirine moiety may influence specific binding
to C12-binding proteins in different organisms we are also
currently expanding our toolset with C12-based probes with
diazirine moieties at various locations in the alkyl chain.
2 J. W. Hastings and K. H. Nealson, Annu. Rev. Microbiol., 1977, 31,
549–595.
3 G. Telford, D. Wheeler, P. Williams, P. T. Tomkins, P. Appleby,
H. Sewell, G. S. Stewart, B. W. Bycroft and D. I. Pritchard,
Infect. Immun., 1998, 66, 36–42.
4 S. R. Chhabra, C. Harty, D. S. Hooi, M. Daykin, P. Williams,
G. Telford, D. I. Pritchard and B. W. Bycroft, J. Med. Chem.,
2003, 46, 97–104.
5 A. J. Ritchie, A. O. Yam, K. M. Tanabe, S. A. Rice and
M. A. Cooley, Infect. Immun., 2003, 71, 4421–4431.
6 K. Tateda, Y. Ishii, M. Horikawa, T. Matsumoto, S. Miyairi,
J. C. Pechere, T. J. Standiford, M. Ishiguro and K. Yamaguchi,
Infect. Immun., 2003, 71, 5785–5793.
7 C. Wagner, S. Zimmermann, G. Brenner-Weiss, F. Hug, B. Prior,
U. Obst and G. M. Hansch, Anal. Bioanal. Chem., 2006, 387,
481–487.
8 G. L. Thomas, C. M. Bohner, H. E. Williams, C. M. Walsh,
M. Ladlow, M. Welch, C. E. Bryant and D. R. Spring,
Mol. BioSyst., 2006, 2, 132–137.
9 V. V. Kravchenko, G. F. Kaufmann, J. C. Mathison, D. A. Scott,
A. Z. Katz, D. C. Grauer, M. Lehmann, M. M. Meijler,
K. D. Janda and R. J. Ulevitch, Science, 2008, 321, 259–263.
10 V. V. Kravchenko, G. F. Kaufmann, J. C. Mathison, D. A. Scott,
A. Z. Katz, M. R. Wood, A. P. Brogan, M. Lehmann, J. M. Mee,
K. Iwata, Q. Pan, C. Fearns, U. G. Knaus, M. M. Meijler, K. D. Janda
and R. J. Ulevitch, J. Biol. Chem., 2006, 281, 28822–28830.
11 A. Jahoor, R. Patel, A. Bryan, C. Do, J. Krier, C. Watters,
W. Wahli, G. Li, S. C. Williams and K. P. Rumbaugh,
J. Bacteriol., 2008, 190, 4408–4415.
12 L. Wu, O. Estrada, O. Zaborina, M. Bains, L. Shen, J. E. Kohler,
N. Patel, M. W. Musch, E. B. Chang, Y. X. Fu, M. A. Jacobs,
M. I. Nishimura, R. E. Hancock, J. R. Turner and J. C. Alverdy,
Science, 2005, 309, 774–777.
13 E. Beale, G. Li, M. W. Tan and K. P. Rumbaugh, Appl. Environ.
Microbiol., 2006, 72, 5135–5137.
14 Y. Zhang, H. Lu and C. I. Bargmann, Nature, 2005, 438, 179–184.
15 K. E. Krueger, A. K. Ghosh, B. P. Krom and R. L. Cihlar,
Microbiology, 2004, 150, 229–240.
16 D. A. Hogan, A. Vik and R. Kolter, Mol. Microbiol., 2004, 54,
1212–1223.
17 A. E. Speers, G. C. Adam and B. F. Cravatt, J. Am. Chem. Soc.,
2003, 125, 4686–4687.
18 M. Sawa, T. L. Hsu, T. Itoh, M. Sugiyama, S. R. Hanson,
P. K. Vogt and C. H. Wong, Proc. Natl. Acad. Sci. U. S. A.,
2006, 103, 12371–12376.
19 Q. Wang, T. R. Chan, R. Hilgraf, V. V. Fokin, K. B. Sharpless and
M. G. Finn, J. Am. Chem. Soc., 2003, 125, 3192–3193.
20 A. Blencowe and W. Hayes, Soft Matter, 2005, 1, 178–205.
21 S. J. Dilly, M. J. Bell, A. J. Clark, A. Marsh, R. M. Napier,
M. J. Sergeant, A. J. Thompson and P. C. Taylor, Chem. Commun.,
2007, 2808–2810.
22 D. P. Smith, J. Anderson, J. Plante, A. E. Ashcroft, S. E. Radford,
A. J. Wilson and M. J. Parker, Chem. Commun., 2008, 5728–5730.
23 D. M. Hodgson, A. H. Labande, F. Y. Pierard and M. A. Exposito
Castro, J. Org. Chem., 2003, 68, 6153–6159.
24 M. J. Bottomley, E. Muraglia, R. Bazzo and A. Carfi, J. Biol.
Chem., 2007, 282, 13592–13600.
25 N. Amara, R. Mashiach, D. Amar, P. Krief, S. A. Spieser,
M. J. Bottomley, A. Aharoni and M. M. Meijler, J. Am. Chem.
Soc., 2009, 131, 10610–10619.
Fig.
3 Deconvoluted ESI mass spectra of crude LasR-LBD:
(A) overexpressed in E. coli in the presence of C12 (20 mM). Calculated
mass: 22 430 Da. Observed: 22 428 Da, and several adducts—possibly
the result of phosphorylation and/or methionine oxidation; (B) over-
expressed in the presence of diazirine probe 2 (20 mM). Calculated mass
increase upon labeling with 2: 290 Da. Observed increase: 292 Da;
(C) overexpressed in the presence of both probe 2 (20 mM) and C12
(20 mM). 22 484 Da is an unknown (possibly oxidized) adduct. All three
cultures were irradiated with a UV lamp (365 nm) for 15 min to effect
crosslinking of the probe, before lysis and affinity purification.
ꢀc
This journal is The Royal Society of Chemistry 2009
7380 | Chem. Commun., 2009, 7378–7380