Fast Synthesis of N-Acylhydrazones
Journal of Combinatorial Chemistry, 2010 Vol. 12, No. 2 247
Table 2. Microwave Promoted Synthesis of N-acylhydrazones,
References and Notes
Starting from Aldehydesa
(1) Li, A.-F.; He, H.; Ruan, Y.-B.; Wen, Z.-C.; Zhao, J.-S.; Jiang,
Q.-J.; Jiang, Y.-B. Org. Biomol. Chem. 2009, 7, 193–200.
(2) Gup, R.; Kirkan, B. Spectrochim. Acta, Part A 2005, 62, 1188–
1195.
(3) Nawar, N.; Khattab, M. A.; Hosny, N. M. Synth. React. Inorg.
Met.-Okg. Chem 1999, 29, 1365–1384.
power time T final P final
entry hydrazide aldehyde product (W) (min) (°C) (bar) yield (%)
1
2
3
4
5
1a
1b
1a
1b
1a
22
22
23
23
24
25a
25b
26a
26b
27a
200
200
200
200
200
4
4
5
7
4
180
176
194
201
205
5.6 93
7.0 95
6.1 quantitative
4.1 89
5.8 quantitative
(4) Chohan, Z. H. Synth. React. Inorg. Met.-Okg. Chem 2001,
31, 1–16.
a N-acylhydrazones 15b, 17b, 18b, 20b, 21b, 25a, and 25b are here
reported for the first time and are fully characterized.
(5) Tian, B. H.; He, M. Z.; Tang, S. X.; Hewlett, I.; Tan, Z. W.;
Li, J. B.; Jin, Y. X.; Yang, M. Bioorg. Med. Chem. Lett. 2009,
19, 2162–2167.
(6) Melnyk, P.; Leroux, V.; Sergheraert, C.; Grellier, P. Bioorg.
Med. Chem. Lett. 2006, 16, 31–35.
(7) Silva, A. G.; Zapata-Sudo, G.; Kummerle, A. E.; Fraga,
C. A. M.; Barreiro, E. J.; Sudo, R. T. Bioorg. Med. Chem.
2005, 13, 3431–3437.
(8) Kalinowski, D. S.; Sharpe, P. C.; Bernhardt, P. V.; Richardson,
D. R. J. Med. Chem. 2008, 51, 331–344.
(9) Sugiura, M.; Kobayashi, S. Angew. Chem., Int. Ed. 2005, 44,
5176–5186, and references therein.
In conclusion, a protocol for microwave neat synthesis of
N-acylhydrazones is here reported for the first time. Accord-
ing to our results, microwave irradiation enhanced yields and
reaction times, avoiding the use of solvents and catalyst. The
reactions were reproducible from 500 mg to 5 g scale and
could be applied to a large number of ketones and aldehydes.
The described method could be a useful synthetic path to
obtain N-acylhydrazones at industrial scale. Although a
specific reactor was used to monitor temperature and
pressure, a standard glass tube with Teflon cap can be used
as well.
(10) Friestad, G. K.; Korapala, C. S.; Ding, H. J. Org. Chem. 2005,
71, 281–289.
(11) Kobayashi, S.; Ishitani, H. Chem. ReV. 1999, 99, 1069-
1094.
Experimental Section
ˇ
(12) Sink, R.; Kovacˇ, A.; Tomasˇc´, T.; Rupnik, V.; Boniface, A.;
Bostock, J.; Chopra, I.; Blanot, D.; Masˇicˇ, L. P.; Gobec, S.;
Zega, A. ChemMedChem 2008, 3, 1362–1370.
(13) Li, Q.; Zhao, Z. Chinese J. Org. Chem. 2009, 29.
(14) Marzouk, M. I. Bulgarian Chem. Commun. 2009, 41, 84–88.
(15) Ku¨c¸u¨kgu¨zel, S¸.G.; Rollas, S.; Erdeniz, H.; Kiraz, M.; Ekinci,
A. C.; Vidin, A. Eur. J. Med. Chem. 2000, 35, 761–771.
(16) Dimmock, J. R.; Vashishtha, S. C.; Stables, J. P. Eur. J. Med.
Chem. 2000, 35, 241–248.
(17) Flegontov, S. A.; Titova, Z. S.; Stolyarov, A. P.; Buzykin,
B. I.; Kitaev, Y. P. Bull. Acad. Sci. USSR DiV. Chem. Sci.
(Engl. Transl.) 1979, 28, 948–953.
General Procedure for Microwave Synthesis. Five
grams of hydrazide and 1 equiv of ketone or aldehyde (and
a magnetic stirring bar) were placed in a quartz tube, which
was introduced in the microwave oven inside the reactor
equipped with temperature and pressure probes. Reaction
times and power were applied according to Tables 1 and 2.
After completion, the system was allowed to cool down to
room temperature, resulting in crystallization of the hydra-
zones obtained. Ethyl ether was added to the quartz tube
and the product was filtrated under reduced pressure and
washed with ethyl ether.
(18) Okimoto, M.; Chiba, T. J. Org. Chem. 1990, 55, 1070–1076.
(19) Pei-Lin-Wu; Peng, S.-Y.; Magrath, J. Synthesis 1995, 4, 435–
438.
Supporting Information Available. Characterization data,
microwave output graphics and spectra of all products. This
material is available free of charge via the Internet at http://
pubs.acs.org.
(20) Berger, R.; Duff, K.; Leighton, J. L. J. Am. Chem. Soc. 2004,
126, 5686–5687.
CC9001444