226
O. Jacquet et al. / Tetrahedron 66 (2010) 222–226
extracted thrice with diethylether. The organic layers were col-
lected, dried over magnesium sulfate and the solvents were re-
moved under vacuum. Cyclopenten-2-ol was obtained as a colorless
oil (5.2 g, 85% yield) and was acylated without further purification.
1H NMR (CDCl3, 250 MHz): 1.65 (m, 2H), 2.26 (m, 2H), 2.5 (m,
1H), 4.90 (d, J¼5.4 Hz, 1H), 5.86 (dd, J¼2.2 and 5.7 Hz, 1H), 6.01 (dd,
J¼2.2 and 5.7 Hz, 1H).
3.2.2. exo-1-(30a,40,50,60,70,70a-Hexahydro-10H-40,70-meth-
ano)indenylcyclobutan-1-ol 2a. Yellow oil, 57% yield starting from
the exo-acetate 1 in the presence of a catalytic amount of Pd(PPh3)4.
1H NMR (CDCl3, 250 MHz): 1.41–1.59 (m, 6H), 1.63–1.79 (m, 4H),
2.06 (m, 2H), 2.17 (m, 1H), 2.27 (m, 2H), 2.88 (m, 1H), 2.99 (m, 1H),
5.65 (dt, J¼2.1 and 5.7 Hz, 1H), 5.89 (dt, J¼2 and 5.7 Hz, 1H). 13C
NMR (CDCl3, 62.5 MHz): 22.7, 22.9, 25.0, 29.4, 29.7, 33.8, 45.4, 52.9,
53.8, 68.0, 76.2, 129.1, 138.2. IR (neat): 3426, 3040, 2949, 2871, 1454,
1363, 1244. HRMS (EI): 204.1310, calcd: 204.1314.
3.1.3. Cyclopent-2-enyl acetate. Cyclopenten-2-ol (3.31 g, 39.4
mmol) was diluted in 20 mL of diethylether followed by the addition
and dissolution of 500 mg (4.1 mmol) of N,N-dimethylaminopyr-
idine. Then, triethylamine (7 mL, 50 mmol) and acetic anhydride
(4.2 mL, 45 mmol) were successively added at 0 ꢂC. The reaction
mixture was stirred one night at room temperature. Diethyl ether
(20 mL) was added and the mixture washed with a 1 M solution of
hydrochloric acid and a saturated solution of sodium hydro-
genocarbonate. The organic layer was dried over magnesium sulfate
and the solvents were removed under vacuum. The crude product
was then distilled under reduced pressure (70 ꢂC/20 mmHg) to af-
ford 3.45 g (70% yield) of a colorless oil.
3.2.3. exo-1-(30a,40,50,60,70,70a-Hexahydro-10H-40,70-meth-
ano)indenylcyclohexan-1-ol 2b. Colorless crystals, 70% yield starting
from the exo-acetate 1 in the presence of a catalytic amount of
Pd(PPh3)4.
Mp 85–88 ꢂC. 1H NMR (CDCl3, 250 MHz): 1.2 (m, 6H), 1.3–1.7 (m,
11H), 2.11 (m, 1H), 2.28 (m, 1H), 2.42 (dt, J¼3.6 and 9.6 Hz, 1H), 2.55
(q, J¼3 Hz, 1H), 2.94 (m, 1H), 5.68 (dt, J¼2.3 and 5.9 Hz, 1H), 5.78
(ddt, J¼0.8, 2.1 and 5.9 Hz, 1H). 13C NMR (CDCl3, 62.5 MHz): 22.0,
23.0, 24.9, 26.0, 35.0, 36.1, 39.2, 41.0, 41.4, 44.8, 52.6, 56.1, 73.2,
129.8, 136.9. IR (neat): 3422, 3043, 2949, 2875, 1451, 1363, 1240.
HRMS (EI): 232.1822, calcd: 232.1827.
1H NMR (CDCl3, 250 MHz): 1.7–1.9 (m, 1H), 2.0 (s, 3H), 2.2–2.3
(m, 1H); 2.3–2.4 (m, 1H), 2.4–2.65 (m, 1H), 5.65 (m, 1H), 5.8 (m, 1H),
6.1 (m, 1H). 13C NMR (CDCl3, 62.5 MHz): 21.2, 29.7, 31.0, 80.4, 129.2,
137.4, 170.9.
3.2.4. exo-1-(30a,40,50,60,70,70a-Hexahydro-10H-40,70-methano)indenyl-
4-phenylcyclohexan-1-ol 5a. White solid. 56% yield of the major
diastereomer.
3.1.4. exo-3a,4,5,6,7,7a-Hexahydro-1H-4,7-methanoindenyl acetate
exo-1. 1H NMR (CDCl3, 250 MHz): 1.1–1.6 (m, 6H), 2.05 (s, 3H), 2.35
(m, 2H), 2.45 (m, 1H), 3.15 (m, 1H), 5.6 (m, 1H), 5.8 (ddd, J¼6, 2 and
2 Hz, 1H), 6.05 (m, 1H). 13C NMR (CDCl3, 62.5 MHz): 21.3, 23.3, 24.7,
39.1, 39.4, 41.5, 50.9, 52.1, 81.2, 129.3, 141.7, 171.2. IR (neat): 2954,
2875, 1735, 1364, 1244, 1042, 1018, 948, 767. HRMS (EI): 192.1143,
calcd: 192.1150. GLC the enantiomers are separable overa Chiraldex-
Mp 76–79 ꢂC. 1H NMR (CDCl3, 250 MHz): 1.39–1.65 (m, 8H),
1.70–1.92 (m, 7H), 2.17 (m, 1H), 2.33 (m, 1H), 2.47 (m, 2H), 2.56 (m,
1H), 2.99 (m, 1H), 5.73 (dt, J¼2.1 and 5.7 Hz, 1H), 5.82 (dt, J¼2.1 and
5.7 Hz, 1H), 7.21–7.34 (m, 5H). 13C NMR (CDCl3, 62.5 MHz): 15.3,
23.0, 25.0, 35.1, 35.9, 39.2, 41.0, 41.4, 44.2, 45.0, 52.6, 57.5, 65.9, 72.6,
125.9, 126.9, 128.3, 129.8, 137.1, 147.4. IR (neat): 3425, 3031, 2976,
2865, 1708, 1363, 1244. HRMS (EI): 308.1804, calcd: 308.2140.
Enantiomers were separated analytically, on Chiralpak IA, hex-
b-PM column (15 m), isotherm program at 140 ꢂC, t1¼12.6 min,
20
t2¼13.3 min. [
a
]
ꢀ12 (CHCl3, c¼1) (66% ee, by chiral GLC analysis).
ane/isopropanol 75:25, flow 0.8 mL$minꢀ1
,
l¼225 nm, 293 K,
D
t1¼8.40 min, t2¼9.55 min.
3.1.5. endo-3a,4,5,6,7,7a-Hexahydro-1H-4,7-methanoindenyl acetate
endo-1. 1H NMR (CDCl3, 250 MHz): 1.1–1.7 (m, 6H), 2.05 (s, 3H), 2.1
(s, 1H), 2.3 (s, 1H), 2.85 (m, 2H), 5.6 (dm, J¼9 Hz, 1H), 5.7 (ddd, J¼6
and 2 Hz, 1H), 5.9 (ddd, J¼5 and 2 Hz, 1H). 13C NMR (CDCl3,
62.5 MHz): 21.0, 23.6, 24.6, 39.3, 40.5, 41.2, 46.3, 51.0, 78.7, 129.6,
137.1, 171.0. IR (neat): 2951, 2875, 1735, 1364, 1263, 1242, 1081, 1047,
1020, 748. HRMS (EI): 192.1143, calcd: 192.1150. GLC the enantio-
Acknowledgements
`
O.J. acknowledges the French ‘Ministere de la Recherche et de
0
´
l Enseignement Superieur’ for a Ph.D. fellowship.
References and notes
mers are separable over a Chiraldex-b-PM column (15 m), isotherm
20
program at 140 ꢂC, t1¼13.4 min, t2¼17.6 min. [
c¼1.15) (96% ee, by chiral GLC analysis).
a
]
þ98.6 (CHCl3,
1. (a) Yamamoto, Y.; Asao, N. Chem. Rev. 1993, 93, 2207–2293; (b) Denmark, S. E.;
Fu, J. Chem. Rev. 2003, 103, 2763–2793.
2. Tamaru, Y. Palladium-catalyzed reactions of allyl and related derivatives
with organoelectrophiles. In Handbook of organopalladium chemistry in
organic synthesis; Negishi, E., Ed.; J. Wiley & Sons: 2002; Vol. 2, pp 1917–
1943.
3. Tabuchi, T.; Inanaga, J.; Yamaguchi, M. Tetrahedron Lett. 1986, 27, 1195–1196.
4. Me´de´gan, S.; He´lion, F.; Namy, J.-L. Eur. J. Org. Chem. 2005, 4715–4722.
5. Tabuchi, T.; Inanaga, J.; Yamaguchi, M. Tetrahedron Lett. 1986, 27, 601–602.
6. Hanamoto, T.; Sugino, A.; Kikukawa, T.; Inanaga, J. Bull. Soc. Chim. Fr. 1997, 134,
391–394.
7. (a) Fiaud, J.-C.; Legros, J.-Y. J. Org. Chem. 1987, 52, 1907–1911; (b) Dvorak, D.;
Stary, I.; Kocovsky, P. J. Am. Chem. Soc. 1995, 117, 6130–6131; (c) Bartels, B.;
Garcia-Yebra, C.; Rominger, F.; Helmchen, G. Eur. J. Inorg. Chem. 2002, 2569–
2586.
8. Araki, S.; Ho, M.; Ito, H.; Butsugan, Y. J. Organomet. Chem. 1987, 333, 329–335.
9. Ujikawa, O.; Inanaga, J.; Yamaguchi, M. Tetrahedron Lett. 1989, 21, 2837–2840.
10. Inanaga, J.; Sakai, S.; Handa, Y.; Yamaguchi, M.; Yokoyama, Y. Chem. Lett. 1991,
2117–2118.
11. Kusuda, K.; Inanaga, J.; Yamaguchi, M. Tetrahedron Lett. 1989, 30, 2945–2948.
12. Malapelle, A.; Abdallah, Z.; Doisneau, G.; Beau, J.-M. Angew. Chem., Int. Ed 2006,
43, 846–849.
13. Weitgenant, J. A.; Mortison, J. D.; Helquist, P. Org. Lett. 2005, 7, 3609–3612.
14. Girard, P.; Namy, J.-L.; Kagan, H. B. J. Am. Chem. Soc. 1980, 102, 2693–2698.
15. Sheldrick, G. M. SHELXS-97, Program for Crystal Structure Solution; University of
Go¨ttingen: Go¨ttingen, Germany, 1997.
16. Sheldrick, G. M. SHELXL-97, Program for the Refinement of Crystal Structures from
Diffraction Data; University of Go¨ttingen: Go¨ttingen, Germany, 1997.
17. Farrugia, L. J. J. Appl. Crystallogr. 1999, 32, 837–838.
D
3.2. General procedure for the samarium diodide mediated
coupling between allylic acetates and electrophiles
Equimolar quantities of allylic acetate (0.5 mmol) and electro-
phile (0.5 mmol) were diluted in 1 mL of dry THF and were then
added to 11 mL (1.1 mmol) of a 0.1 M solution of SmI2 in THF. The
resulting mixture was stirred for 15 h at room temperature. After
hydrolysis with a 1 M solution of hydrochloric acid the mixture was
extracted thrice with diethylether, the organic layers were dried
over magnesium sulfate and the solvents were removed under
vacuum. The crude product was then purified by flash chroma-
tography on silica gel (heptane/ethyl acetate: 9/1).
3.2.1. 1-(Cyclopent-20-enyl)cyclohexan-1-ol. Colorless oil, 58% yield
(70% in the presence of a catalytic amount of Pd(PPh3)4).
1H NMR (CDCl3, 250 MHz): 1.30–1.70 (m, 8H), 1.90 (m, 4H), 2.35
(m, 2H), 2.70 (m, 1H), 5.75 (dq, J¼2.2 and 6 Hz, 1H), 5.92 (dq, J¼2.2
and 6 Hz, 1H). 13C NMR (CDCl3, 62.5 MHz): 19.4, 21.9, 24.4, 29.4,
32.2, 35.5, 52.1, 130.1, 133.8. IR (neat): 3460, 3052, 2931, 2850, 1447,
1260. HRMS (EI): 166.1352, calcd: 166.1358.
18. Flack, H. D. Acta Crystallogr. 1983, A39, 876–881.