force for the reaction. In this regard, the use of Li[Me3SiNR]
to effect the CO–CNR conversion of a carbonyl compound is
analogous to the formation of isocyanide compounds by using
phosphorimidates, Li[(EtO)2(O)PNR],8 and phosphinimines,
R3PNR0,9 for which P–O bond formation presumably
provides the driving force.
12 (a) E. O. Fischer, Adv. Organomet. Chem., 1976, 14, 1; (b) P. de
Fremont, N. Marion and S. P. Nolan, Coord. Chem. Rev., 2009,
´
253, 862.
13 (a) P. C. Ford and A. Rokicki, Adv. Organomet. Chem., 1988, 28,
139; (b) M. Torrent, M. Sola and G. Frenking, Organometallics,
1999, 18, 2801.
14 D. J. Darensbourg and J. A. Froelich, J. Am. Chem. Soc., 1977, 99,
4726.
While the formation of an isocyanide complex by reaction of
a thiocarbonyl derivative with RNH2 may be considered a more
appealing direct method of synthesis than is the reaction of a
carbonyl complex with Li[Me3SiNR], a downside of the former
route is that compounds which feature thiocarbonyl ligands are
much less common than carbonyl derivatives.37 Therefore, the
reaction of a carbonyl derivative with Li[Me3SiNR] provides
a convenient alternative for the synthesis of isocyanide
compounds from carbonyl derivatives. In addition, another
advantage of using Li[Me3SiNR] to synthesize transition metal
isocyanide compounds is that Li[Me3SiNR] derivatives
are obtained from primary amines, which are more readily
available commercially than are isocyanides.
15 M. O. Albers and N. J. Coville, Coord. Chem. Rev., 1984, 53, 227.
16 (a) R. J. Angelici, Acc. Chem. Res., 1972, 5, 335; (b) H. Behrens,
Adv. Organomet. Chem., 1980, 18, 1.
17 (a) M. V. Ovchinnikov, X. P. Wang, A. J. Schultz, I. A. Guzei and
R. J. Angelici, Organometallics, 2002, 21, 3292; (b) S. Anderson,
D. J. Cook and A. F. Hill, Organometallics, 1997, 16, 5595.
18 J. Kim, S. G. Bott and D. M. Hoffman, Inorg. Chem., 1998, 37, 3835.
19 (a) M. Suginome and Y. Ito, Science of Synthesis, Thieme,
New York, 2004, vol. 19, p. 445; (b) I. Ugi, U. Fetzer,
U. Eholzer, H. Knupfer and K. Offermann, Angew. Chem., Int.
Ed. Engl., 1965, 4, 472.
20 (a) R. P. Bush, N. C. Lloyd and C. A. Pearce, Chem. Commun.,
1967, 1270; (b) W. S. Rees Jr., D. M. Green and W. Hesse,
Polyhedron, 1992, 11, 1697; (c) D. H. Harris and M. F. Lappert,
J. Organomet. Chem., 1976, 2, 13.
21 Mo(CO)5(CNBut), Mo(CO)4(CNBut)2 and Mo(CO)3(CNBut)3
have been isolated in 71%, 81% and 28% yields, respectively.
22 (a) R. B. King and M. S. Saran, Inorg. Chem., 1974, 13, 74;
We thank the US Department of Energy, Office of Basic
Energy Sciences (DE-FG02-93ER14339) for support of this
research. The National Science Foundation (CHE-0619638) is
thanked for acquisition of an X-ray diffractometer. Aaron
Sattler is thanked for helpful discussions.
(b) W. Imhof, K. Halbauer, D. Donnecke and H. Gorls,
¨
¨
Acta Crystallogr., Sect. E, 2006, 62, M462; (c) N. J. Coville and
M. O. Albers, Inorg. Chim. Acta, 1982, 65, L7.
23 The molecular structure of fac-Mo(CO)3(CNBut)3 has been
reported, see ref. 22b.
24 (a) M. O. Albers, N. J. Coville and E. Singleton, J. Chem. Soc.,
Dalton Trans., 1982, 1069; (b) F. A. Cotton and R. V. Parish,
J. Chem. Soc., 1960, 1440.
Notes and references
1 (a) M. L. Kuznetsov, Russ. Chem. Rev. (Engl. Transl.), 2002, 71,
265; (b) H. Werner, Angew. Chem., Int. Ed. Engl., 1990, 29, 1077;
(c) B. Crociani, in Reactions of Coordinated Ligands, ed.
P. S. Braterman, Plenum Press, New York, 1986, vol. 1, p. 553;
(d) E. Singleton and H. E. Oosthuizen, Adv. Organomet. Chem.,
1983, 22, 209; (e) Y. Yamamoto, Coord. Chem. Rev., 1980, 32, 193;
(f) F. Bonati and G. Minghetti, Inorg. Chim. Acta, 1974, 9, 95.
2 (a) I. P. Csonka, U. Szepes and A. Modelli, J. Mass Spectrom.,
25 G. W. Harris, J. C. A. Boeyens and N. J. Coville, Acta Crystallogr.,
Sect. C, 1983, 39, 1180.
26 K. Halbauer, D. Donnecke, H. Gorls and W. Imhof, Z. Anorg.
¨
Allg. Chem., 2006, 632, 1477.
¨
27 S. A. Al-Jibori and B. Shaw, J. Organomet. Chem., 1980, 192, 83.
28 (a) F. H. Stephens, J. S. Figueroa, C. C. Cummins, O. P. Kryatova,
S. V. Kryatov, E. V. Rybak-Akimova, J. E. McDonough and
C. D. Hoff, Organometallics, 2004, 23, 3126; (b) M. Suginome,
H. Oike, P. H. Shuff and Y. Ito, Organometallics, 1996, 15, 2170.
29 (a) B. J. Fox, Q. Y. Sun, A. G. DiPasquale, A. R. Fox,
A. L. Rheingold and J. S. Figueroa, Inorg. Chem., 2008, 47,
9010; (b) B. J. Fox, M. D. Millard, A. G. DiPasquale,
A. L. Rheingold and J. S. Figueroa, Angew. Chem., Int. Ed.,
2009, 48, 3473–3477; (c) L. A. Labios, M. D. Millard,
A. L. Rheingold and J. S. Figueroa, J. Am. Chem. Soc., 2009,
131, 11318.
30 For other structurally characterized 1-adamantylisocyanide
compounds, see ref. 28.
31 For other examples of reactions that involve cleavage of a Si–N
bond and formation of a Si–O bond, see: R. M. Pike, J. Org.
Chem., 1961, 26, 232.
2004, 39, 1456; (b) B. Karolyi, Z. Gengeliczki, G. Vass and
´
L. Szepes, J. Organomet. Chem., 2009, 694, 2923.
3 F. A. Cotton and F. Zingales, J. Am. Chem. Soc., 1961, 83, 351.
4 (a) K. P. Adams, J. A. Joyce, T. A. Nile, A. I. Patel, C. D. Reid and
J. M. Walters, J. Mol. Catal., 1985, 29, 201; (b) T. Saegusa and
Y. Ito, Synthesis, 1975, 291.
5 (a) B. M. Trost and C. A. Merlic, J. Am. Chem. Soc., 1990, 112,
9590; (b) S. Braune and U. Kazmaier, Angew. Chem., Int. Ed.,
2003, 42, 306.
6 (a) H. Ito, T. Kato and M. Sawamura, Chem. Asian J., 2007, 2,
1436; (b) M. Tanabiki, K. Tsuchiya, Y. Kumanomido,
K. Matsubara, Y. Motoyama and H. Nagashima, Organometallics,
2004, 23, 3976.
7 (a) M. Suginome, T. Iwanami, Y. Ohmori, A. Matsumoto and
Y. Ito, Chem.–Eur. J., 2005, 11, 2954; (b) H. Yoshida, J. Ikadai,
M. Shudo, J. Ohshita and A. Kunai, Organometallics, 2005, 24, 156.
8 (a) S. E. Gibson, H. Ibrahim, C. Pasquier, M. A. Peplow,
J. M. Rushton, J. W. Steed and S. Sur, Chem.–Eur. J., 2002, 8,
269; (b) S. E. Gibson, T. W. Hinkamp, M. A. Peplow and
M. F. Ward, Chem. Commun., 1998, 1671.
9 (a) H. Alper and R. A. Partis, J. Organomet. Chem., 1972, 35, C40;
(b) J. Kiji, A. Matsumura, T. Haishi, S. Okazaki and J. Furukawa,
Bull. Chem. Soc. Jpn., 1977, 50, 2731; (c) L.-C. Chen, M.-Y. Chen,
J.-H. Chen, Y.-S. Wen and K.-L. Lu, J. Organomet. Chem., 1992,
425, 99; (d) K.-L. Lu, C.-C. Chen, Y.-W. Lin, F.-E. Hong,
H.-M. Gau, L.-L. Gan and H.-D. Luoh, J. Organomet. Chem.,
1993, 453, 263.
32 It is worth noting that metal carbonyl compounds also react with
bis(trimethylsilyl)amide derivatives, M[N(SiMe3)2], but the
products obtained are typically cyanide compounds (LnMCN)
resulting from cleavage of both N–SiMe3 bonds or products
derived from deprotonation of a ligand. See: (a) U. Wannagat
and H. Seyffert, Angew. Chem., Int. Ed. Engl., 1965, 4, 438;
(b) R. B. King, Inorg. Chem., 1967, 6, 25; (c) H. Brunner, Chem.
Ber., 1969, 102, 305; (d) M. Moll, H. Behrens, R. Kellner,
H. Knochel and P. Wurstl, Z. Naturforsch., B, 1976, 31, 1019.
¨
¨
33 LiOSiMe3 was not observed, but its formation is postulated on the
basis of previous studies (ref. 34). It is certainly possible that
LiOSiMe3 could participate in subsequent reactions.
34 (a) A. Orita, K. Ohe and S. Murai, Organometallics, 1994, 13, 1533;
(b) J. E. Baldwin, A. E. Derome and P. D. Riordan, Tetrahedron,
1983, 39, 2989.
10 (a) W. P. Fehlhammer and A. Mayr, Angew. Chem., Int. Ed. Engl.,
1975, 14, 757; (b) D. Luart, J.-Y. Salaun, W. Patinec, R. Rumin
35 For an early example, see: P. Jutzi and F. W. Schroder, Angew.
Chem., Int. Ed. Engl., 1971, 10, 339.
¨
¨
and H. des Abbayes, Inorg. Chim. Acta, 2003, 350, 656.
11 Current Methods in Inorganic Chemistry, vol. 3: Fundamentals of
Molecular Catalysis, ed. H. Kurosawa and A. Yamamoto,
Elsevier, New York, 2007.
36 W. W. Greaves and R. J. Angelici, Inorg. Chem., 1981, 20, 2983
and references therein.
37 W. Petz, Coord. Chem. Rev., 2008, 252, 1689.
ꢁc
This journal is The Royal Society of Chemistry 2009
7568 | Chem. Commun., 2009, 7566–7568