Recently, Albaneze-Walker and co-workers reported aryl
sulfamates to be viable coupling partners for conventional
Suzuki-Miyaura or Negishi cross-coupling reactions with
stoichiometric amounts of preactivated boron- or zinc-based
nucleophiles, respectively.6 Considering the moisture-stable
nature of the imidazolylsulfonates, along with the self-destruc-
tive, thus nongenotoxic, properties of the cross-coupling byprod-
uct imidazolesulfonic acid, we probed C-H bond functional-
izations with these user-friendly electrophiles. As a result of
these efforts, we wish to report herein on first direct arylations
of heteroarenes1j,7,8 with convenient imidazolylsulfonates as
arylating reagents. Additionally, we found that the optimized
palladium(0) catalyst also allowed for direct C-H bond
functionalizations with easily accessible benzyl and alkenyl
phosphates9 as electrophilic coupling partners.
from an aryl-substituted phosphine displayed a superior
catalytic efficacy (entry 7), which could be further improved
when employing bidentate ligands (entries 8-12). Among
a variety of bidentate phosphine ligands, dppe gave rise to
optimal results, particularly when using Cs2CO3 as base and
NMP as solvent (entry 16).10 It is noteworthy that satisfactory
isolated yields were also obtained with PdCl2 as a less
expensive metal precursor (entry 17).
Subsequently, we explored the scope of the optimized
catalytic system in direct arylations of benzoxazoles 1 with
differently substituted imidazolylsulfonates 2 (Scheme 1).
Scheme 1. Direct Arylation with Imidazolylsulfonates 2
At the outset of our studies, we tested representative
ligands for the palladium-catalyzed direct arylation of
benzoxazole (1a) with imidazolylsulfonate 2a (Table 1).
Table 1. Optimization of Direct Arylation with Sulfamate 2aa
entry
L
base
solvent
yield, %
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
-
K3PO4
K3PO4
K3PO4
K3PO4
K3PO4
K3PO4
K3PO4
K3PO4
K3PO4
K3PO4
K3PO4
K3PO4
K2CO3
Cs2CO3
Cs2CO3
Cs2CO3
Cs2CO3
NMP
NMP
NMP
NMP
NMP
NMP
NMP
NMP
NMP
NMP
NMP
NMP
NMP
PhMe
DMSO
NMP
NMP
<5c
<5c
<5c
<5c
<5c
<5c
35
41
54
59
61
HIMesClb
HIPrClb
SHIPrClb
b
PCy3
X-Phosb
b
PPh3
Remarkably, the catalyst turned out to be broadly applicable,
and hence enabled the efficient conversion of electron-
dppf
Xantphos
rac-BINAP
dppp
dppe
dppe
dppe
dppe
dppe
dppe
(6) (a) Albaneze-Walker, J.; Raju, R.; Vance, J. A.; Goodman, A. J.;
Reeder, M. R.; Liao, J.; Maust, M. T.; Irish, P. A.; Espino, P.; Andrews,
D. R. Org. Lett. 2009, 11, 1463–1466. For related recent studies, see: (b)
Luo, Y.; Wu, J. Organometallics 2009, 28, 6823–6826. (c) Goegsig, T. M.;
Lindhardt, A. T.; Skrydstrup, T. Org. Lett. 2009, 11, 4886–4888. (d)
Quasdorf, K. W.; Riener, M.; Petrova, K. V.; Garg, N. K. J. Am. Chem.
Soc. 2009, 131, 17748–17749.
74
13c
20c
84
98
(7) Recent reviews on direct arylations of heteroarenes: (a) Bellina, F.;
Rossi, R. Tetrahedron 2009, 65, 10269–10310. (b) Joucla, L.; Djakovitch,
L. AdV. Synth. Catal. 2009, 351, 673–714.
86d
a Reaction conditions: 1a (0.50 mmol), 2a (0.60 mmol), Pd(OAc)2 (5.0
mol %), L (7.5 mol %), base (1.00 mmol), solvent (2.0 mL), 100 °C, 14 h.
b L (15 mol %). c GC-conversion; HIMes ) N,N′-bis(2,4,6-trimethylphe-
nyl)imidazolium, (S)HIPr ) N,N′-bis(2,6-diisopropylphenyl)imidazol(in)-
ium. d With PdCl2 (5.0 mol %).
(8) For select recent examples of direct arylations employing oxazoles,
see: (a) Canivet, J.; Yamaguchi, J.; Ban, I.; Itami, K. Org. Lett. 2009, 11,
1733–1736. (b) Hachiya, H.; Hirano, K.; Satoh, T.; Miura, M. Org. Lett.
2009, 11, 1737–1740. (c) Flegeau, E. F.; Popkin, M. E.; Greaney, M. F.
Org. Lett. 2008, 10, 2717–2720. (d) Sanchez, R. S.; Zhuravlev, F. A. J. Am.
Chem. Soc. 2007, 129, 5824–5825. (e) Do, H.-Q.; Daugulis, O. J. Am. Chem.
Soc. 2007, 129, 12404–12405, and references cited therein.
(9) For representative recent examples of conVentional cross-coupling
reactions with phosphates as electrophiles, see: (a) Gauthier, D.; Beckendorf,
S.; Gøgsig, T. M.; Lindhardt, A. T.; Skrydstrup, T. J. Org. Chem. 2009,
74, 3536–3539. (b) Yoshikai, N.; Matsuda, H.; Nakamura, E. J. Am. Chem.
Soc. 2009, 131, 9590–9599. (c) Bedford, R. B.; Huwe, M.; Wilkinson, M. C.
Chem. Commun. 2009, 600–602. (d) Hansen, A.; Ebran, J.-P.; Gøgsig, T. M.;
Skrydstrup, T. J. Org. Chem. 2007, 72, 6464–6472. (e) Ebran, J.-P.; Hansen,
A. L.; Gøgsig, T. M.; Skrydstrup, T. J. Am. Chem. Soc. 2007, 129, 6931–
6942. (f) Hansen, A. L.; Ebran, J.-P.; Ahlquist, M.; Norrby, P.-O.;
Skrydstrup, T. Angew. Chem., Int. Ed. 2006, 45, 3349–3353. (g) McLaughlin,
M. Org. Lett. 2005, 7, 4875–4878. A review: (h) Lindhardt, A. T.;
Skrydstrup, T. Chem.sEur. J. 2008, 14, 8756–8766, and references cited
therein.
Unfortunately, electron-rich σ-donor ligands, such as N-
heterocyclic carbenes (entries 2-4) or tertiary alkyl-
substituted phosphines (entries 5 and 6), provided only
unsatisfactory results. Contrarily, a palladium catalyst derived
(3) (a) Ackermann, L.; Althammer, A.; Born, R. Angew. Chem., Int.
Ed. 2006, 45, 2619–2622. (b) Ackermann, L.; Vicente, R.; Althammer, A.
Org. Lett. 2008, 10, 2299–2302.
(4) Ackermann, L.; Althammer, A.; Fenner, S. Angew. Chem., Int. Ed.
2009, 48, 201–204.
(5) Ackermann, L.; Mulzer, M. Org. Lett. 2008, 10, 5043–5045.
Org. Lett., Vol. 12, No. 4, 2010
725