Page 7 of 7
The Journal of Organic Chemistry
Chemistry of 1,2-Diazetidin-3-Ones. In Adv. Heterocycl. Chem., 2013;
Vol. 110, pp 145-174.
(10) Miller, F. A.; Mayo, D. W.; Hannah, R. W., Course notes on
the interpretation of infrared and Raman spectra. Wiley-Interscience:
Hoboken, N.J., 2004; p xxvi, 567 p.
1
2
3
4
5
6
7
8
(3) (a) Xu, S. L.; Chen, J. R.; Shang, J.; Qing, Z. Q.; Zhang, J. J.;
Tang, Y. H. Divergent amine-catalyzed [2+2] annulation of allenoates
with azodicarboxylates: facile synthesis of 1,2-diazetidines.
Tetrahedron Lett. 2015, 56, 6456-6459; (b) Zuo, Y. J.; Qu, J. How Does
Aqueous Solubility of Organic Reactant Affect a Water-Promoted
Reaction? J. Org. Chem. 2014, 79, 6832-6839; (c) Narayan, S.;
Muldoon, J.; Finn, M. G.; Fokin, V. V.; Kolb, H. C.; Sharpless, K. B.
"On water": Unique reactivity of organic compounds in aqueous
suspension. Angew. Chem., Int. Ed. 2005, 44, 3275-3279; (d) Hall, J.
H.; Jones, M. L. Reactions of Azodiones with Electron-Rich Alkenes -
1,2,4-Triazoline-3,5-Diones and Vinyl Ethers. J. Org. Chem. 1983, 48,
822-826; (e) Adam, W.; Delucchi, O. (2+2)-Cycloaddition of
Triazolinediones to Strained Bicycloalkenes. Tetrahedron Lett. 1981,
22, 929-932; (f) Nelsen, S. F.; Peacock, V. E.; Weisman, G. R.; Landis,
M. E.; Spencer, J. A. Conformations of 4-Membered Ring Hydrazines
and Hydrazine Radical Cations. J. Am. Chem. Soc. 1978, 100, 2806-
2810; (g) Ding, Y.; Li, H.; Meng, Y.; Zhang, T.; Li, J.; Chen, Q. Y.;
Zhu, C. Direct synthesis of hydrazones by visible light mediated
aerobic oxidative cleavage of the C-C bond. Org. Chem. Front. 2017,
4, 1611-1614.
(11) Miller, F. A.; Capwell, R. J.; Lord, R. C.; Rea, D. G. Infrared
and Raman spectra of cyclobutane and cyclobutane-d8. Spectrochim.
Acta A 1972, 28, 603-618.
(12) Rappoport, Z.; Liebman, J. F., The chemistry of cyclobutanes.
Wiley: Hoboken, NJ, 2005.
(13) Parr, R. G., Density Functional Theory of Atoms and Molecules.
Springer Netherlands: Dordrecht, 1980; p 5-15.
(14) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;
Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci,
B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H.
P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.;
Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima,
T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Jr., J. A. M.; Peralta,
J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J.; Brothers, E. N.; Kudin, K.
N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.;
Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.;
Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken,
V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev,
O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R.
L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.;
Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman,
J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision
D.01, Gaussian, Inc.: Wallingford, CT, USA, 2013.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(4) Cheng, X.; Ma, S. M. [Pd(PPh3)4]-catalyzed diastereoselective
synthesis of trans-1,2-diazetidines from 2,3-allenyl hydrazines and aryl
halides. Angew. Chem., Int. Ed. 2008, 47, 4581-4583.
(5) (a) Rajkumar, S.; Clarkson, G. J.; Shipman, M. Regio- and
Stereocontrolled Synthesis of 3-Substituted 1,2-Diazetidines by
Asymmetric Allylic Amination of Vinyl Epoxide. Org. Lett. 2017, 19,
2058-2061; (b) Brown, M. J.; Clarkson, G. J.; Inglis, G. G.; Shipman,
M. Synthesis and Functionalization of 3-Alkylidene-1,2-diazetidines
Using Transition Metal Catalysis. Org. Lett. 2011, 13, 1686-1689; (c)
Brown, M. J.; Clarkson, G. J.; Fox, D. J.; Inglis, G. G.; Shipman, M.
Critical importance of leaving group 'softness' in nucleophilic ring
closure reactions of ambident anions to 1,2-diazetidines. Tetrahedron
Lett. 2010, 51, 382-384; (d) Miao, W.; Xu, W. L.; Zhang, Z. L.; Ma, R.
J.; Chen, S. H.; Li, G. A novel and efficient method for the synthesis of
1,2-diazetidines. Tetrahedron Lett. 2006, 47, 6835-6837.
(6) Brown, M. J. Synthesis, Structure and Functionalisation of 1,2-
diazetidines. Ph.D. Thesis, University of Warwick, University of
Warwick, 2011.
(7) Iacobini, G. P.; Porter, D. W.; Shipman, M. Chemo- and
enantioselective Rh-catalysed hydrogenation of 3-methylene-1,2-
diazetidines: application to vicinal diamine synthesis. Chem. Commun.
2012, 48, 9852-9854.
(8) (a) Kato, N.; Shirai, T.; Yamamoto, Y. Rhodium-Catalyzed
Enantioselective Arylation of Aliphatic Imines. Chem. Eur. J. 2016, 22,
7739-7742. (b) Lee, C.; Wang, X.; Jang, H. Y. Copper-catalyzed
oxidative N-S bond formation for the synthesis of N-sulfenylimines.
Org. Lett. 2015, 17, 1130-1133; (c) Foster, J. C.; Powell, C. R.;
Radzinski, S. C.; Matson, J. B. S-aroylthiooximes: A facile route to
hydrogen sulfide releasing compounds with structure-dependent
release kinetics. Org. Lett. 2014, 16, 1558-1561. and references cited
therein.
(9) While we focused on the particularly less known C-unsubstituted
1,2-diazetidines in this work, we also tried to use secondary dibromide
(±)-2,3-dibromobutane instead of 1,2-dibromoethane. However, no
conversion of the dibromide was observed at -20 oC.
(15) Becke, A. D. Density‐functional thermochemistry. III. The role
of exact exchange. J. Chem. Phys. 1993, 98, 5648-5652.
(16) Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-
Salvetti correlation-energy formula into a functional of the electron
density. Phys. Rev. B 1988, 37, 785-789.
(17) (a) Check, C. E.; Faust, T. O.; Bailey, J. M.; Wright, B. J.;
Gilbert, T. M.; Sunderlin, L. S. Addition of Polarization and Diffuse
Functions to the LANL2DZ Basis Set for P-Block Elements. J. Phys.
Chem. A 2001, 105, 8111-8116; (b) Hay, P. J.; Wadt, W. R. Ab initio
effective core potentials for molecular calculations. Potentials for the
transition metal atoms Sc to Hg. J. Chem. Phys. 1985, 82, 270-283.
(18) (a) Hehre, W. J.; Ditchfield, R.; Pople, J. A. Self—Consistent
Molecular Orbital Methods. XII. Further Extensions of Gaussian—
Type Basis Sets for Use in Molecular Orbital Studies of Organic
Molecules. J. Chem. Phys. 1972, 56, 2257-2261; (b) Hariharan, P. C.;
Pople, J. A. The influence of polarization functions on molecular
orbital hydrogenation energies. Theor. Chim. Acta 1973, 28, 213-222.
(19) McLean, A. D.; Chandler, G. S. Contracted Gaussian basis sets
for molecular calculations. I. Second row atoms, Z=11–18. J. Chem.
Phys. 1980, 72, 5639-5648.
(20) Petersson, G. A.; Al‐Laham, M. A. A complete basis set model
chemistry. II. Open‐shell systems and the total energies of the first‐row
atoms. J. Chem. Phys. 1991, 94, 6081-6090.
(21) Frisch, M. J.; Yamaguchi, Y.; Gaw, J. F.; III, H. F. S.; Binkley,
J. S. Analytic Raman intensities from molecular electronic wave
functions. J. Chem. Phys. 1986, 84, 531-532.
(22) Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.; Flannery, B.
P., Numerical recipes in C (2nd ed.): the art of scientific computing.
Cambridge University Press: 1992; p 994.
(23) Ansar, S. M.; Haputhanthri, R.; Edmonds, B.; Liu, D.; Yu, L.;
Sygula, A.; Zhang, D. Determination of the Binding Affinity, Packing,
and Conformation of Thiolate and Thione Ligands on Gold Nanoparti-
cles. J. Phys. Chem. C 2011, 115, 653-660.
ACS Paragon Plus Environment