LETTER
Synthesis of 3-Aza-a-carbolines
3209
Table 3 Selective Reduction of Diester 10aa
EtO2C
EtO2C
HOH2C
N
N
N
+
CO2Et
CH2OH
CO2Et
N
N
N
N
N
N
Bn
Bn
Bn
11b
10a
11a
Entry
Conditions
11a/11bb
1:4.4
Yield of 11b (%)
1
2
3
4
5
6
7
EtOH, –10 °C, 1 h
THF, –10 °C, 1 h
i-PrOH, –10 °C, 4 h
NIc
NIc
9
1:2.9
1:6.8
EtOH–THF, –10 °C, 2 h
EtOH–THF, –30 °C, 4 h
EtOH–THF, –20 °C, 3.5 h
EtOH–THF, –20 °C, 24 hd
1:10.0
1:7.3
33
NIc
55
62
1:9.5
1:18.7
a All reactions were conducted under anhyd conditions using 2 equiv of NaBH4 except entry 7.
b The ratio of compounds 11a and 11b was determined by LC-MS analysis;
c NI denotes no isolation was performed.
d Conditions: 1 equiv of NaBH4 was used.
(3) Boger, D. L.; Weinreb, S. M. Hetero Diels–Alder
In summary, 2-aminoindoles 8a–c were introduced as
productive dienophiles in IDA reactions with various
1,3,5-triazines, which produced highly substituted 3-aza-
a-carbolines in excellent yields. Unlike most IDA reac-
tions that often require thermal conditions (moderate to el-
evated temperatures), the 2-aminoindoles 8a–c are highly
reactive, and its IDA reactions proceeded smoothly at
room temperature. This methodology represents a new en-
try to 3-aza-a-carboline synthesis and should complement
existing methods to readily access the 3-aza-a-carboline
scaffold. Furthermore, the two ester groups of the IDA
product 10a were differentially reduced with 95% selec-
tivity toward the C4 ester group. The application of this
new IDA reaction to the synthesis of various 3-aza-
mescengrincin analogues and exploration of their neuro-
protective activities are in progress and will be reported in
due course.
Methodology in Organic Synthesis, Vol. 47; Academic
Press: New York, 1987.
(4) Boger, D. L.; Dang, Q. Tetrahedron 1988, 44, 3379.
(5) Boger, D. L.; Kochanny, M. J. J. Org. Chem. 1994, 59, 4950.
(6) Helbecque, N.; Moquin, C.; Bernier, J. L.; Morel, E.; Guyot,
M.; Henichart, J. P. Cancer Biochem. Biophys. 1987, 9, 271.
(7) Nantka-Namirski, P.; Kaczmarek, L. Pol. J. Pharmacol.
Pharm. 1978, 30, 569.
(8) Peczynska-Czoch, W. Arch. Immunol. Ther. Exp. (Warsz)
1987, 35, 97.
(9) Peczynska-Czoch, W. Arch. Immunol. Ther. Exp. (Warsz)
1987, 35, 103.
(10) Peczynska-Czoch, W.; Mordarski, M.; Kaczmarek, L.;
Nantka-Namirski, P. Arch. Immunol. Ther. Exp. (Warsz)
1987, 35, 109.
(11) Sasaki, Y. F.; Shirasu, Y. Mutat. Res. 1993, 302, 165.
(12) Duval, E.; Cuny, G. D. In 229th ACS National Meeting;
ACS: Washington D.C. / San Diego, 2005.
(13) Shin-Ya, K.; Kim, J. S.; Furihata, K.; Hayakawa, Y.; Seto,
H. J. Asian Nat. Prod. Res. 2000, 2, 121.
(14) Vera-Luque, P.; Alajarin, R.; Alvarez-Builla, J.; Vaquero,
J. J. Org. Lett. 2006, 8, 415.
(15) Seitz, G.; Kampchen, T. Arch. Pharm. (Weinheim) 1976,
309, 679.
Supporting Information for this article is available online at
(16) Seitz, G.; Mohr, R. Chem. Zeit. 1987, 111, 81.
(17) Haider, N.; Mereiter, K.; Wanko, R. Heterocycles 1995, 41,
1445.
(18) Haider, N.; Kaferbock, J. Tetrahedron 2004, 60, 6495.
(19) Lee, L.; Snyder, J. K. In Advances in Cycloaddition; JAI
Press Inc.: Stamford, 1999.
Acknowledgment
We thank Professor Zhixiang Yu (College of Chemistry, Peking
University) who encouraged us to explore these IDA reactions in
the presence of base (Et3N). This work was supported by grants
(2009ZX09501-010) from the National Sci-Tech Major Special
Item and (90713008 and 20802024) from the National Natural Sci-
ence Foundation of China and Changchun Discovery Sciences, Ltd.
(20) Benson, S. C.; Lee, L.; Yang, L.; Snyder, J. K. Tetrahedron
2000, 56, 1165.
(21) Benson, S. C.; Gross, J. L.; Snyder, J. K. J. Org. Chem. 1990,
55, 3257.
References and Notes
(22) HOMO energies for indole and 8a are –124.5 kcal/mol and
–114.1 kcal/mol, respectively (calculated using Spartan with
the B3LYP/6-31G* method).
(1) Taylor, E. C. Bull. Soc. Chim. Belg. 1988, 97, 599.
(2) Takao, K. M. R.; Tadano, K. Chem. Rev. 2005, 105, 4779.
Synlett 2009, No. 19, 3206–3210 © Thieme Stuttgart · New York