ChemComm
Communication
2 (a) D. Gao, H. Xu, M. A. Philibert and R. Kopelman, Angew. Chem.,
Int. Ed., 2007, 46, 2224; (b) K. Y. Lee and D. J. Mooney, Chem. Rev.,
2001, 101, 1869; (c) P. K. Vemula, J. Li and G. John, J. Am. Chem. Soc.,
2006, 128, 8932; (d) R. Langer, Nature, 1998, 392, 5; (e) S. Kiyonaka,
K. Sada, I. Yoshimura, S. Shinkai, N. Kato and I. Hamachi, Nat.
Mater., 2004, 3, 58; ( f ) J. L. Drury and D. J. Mooney, Biomaterials,
2003, 24, 4337; (g) J. P. Gong, Y. Katsuyama, T. Kurokawa and
Y. Osada, Adv. Mater., 2003, 15, 1155.
3 (a) K. J. C. van Bommel, C. van der Pol, I. Muizebelt, A. Friggeri,
A. Meetsma, B. L. Feringa and J. van Esch, Angew. Chem., Int. Ed.,
2004, 43, 1663; (b) N. M. Sangeetha and U. Maitra, Chem. Soc. Rev.,
2005, 34, 821, and references therein; (c) S. P. Patil, H. S. Jeong and
B. H. Kim, Chem. Commun., 2012, 48, 8901.
4 (a) Y. Zhou and D. Yan, Chem. Commun., 2009, 1172; (b) M. Czaun,
L. Hevesi, M. Takafuji and H. Ihara, Chem. Commun., 2008, 2124;
(c) Y. Zhou, W. Huang, J. Liu, X. Zhu and D. Yan, Adv. Mater., 2010,
22, 4567; (d) Y. Zhang, W. Huang, Y. Zhou and D. Yan, Chem.
Commun., 2007, 2587.
Fig. 4 TEM image of GO oxide gel from I.
5 (a) R. V. Ulijn and A. M. Smith, Chem. Soc. Rev., 2008, 37, 664;
(b) M. Zhou, A. M. Smith, A. K. Das, N. W. Hodson, R. F. Collins,
R. V. Ulijn and J. E. Gough, Biomaterials, 2009, 30, 2523; (c) B. G. Bag,
S. K. Dinda, P. P. Dey, V. A. Mallia and R. G. Weiss, Langmuir, 2009,
25, 8663; (d) R. J. Williams, A. M. Smith, R. Collins, N. Hodson,
A. K. Das and R. V. Ulijn, Nat. Nanotechnol., 2009, 4, 19; (e) A. Saha,
B. Roy, A. Garai and A. K. Nandi, Langmuir, 2009, 25, 8457;
( f ) Q. Chen, Y. Feng, D. Zhang, G. Zhang, Q. Fan, S. Sun and
D. Zhu, Adv. Funct. Mater., 2010, 20, 36; (g) M. Ayabe, T. Kishida,
N. Fujita, K. Sada and S. Shinkai, Org. Biomol. Chem., 2003, 1, 2744;
ˇ
´
´
(h) Z. Dˇzolic, M. Cametti, A. D. Cort, L. Mandolini and M. Zinic,
Chem. Commun., 2007, 3535.
6 (a) D. K. Smith, Adv. Mater., 2006, 18, 2773; (b) G. R. Newkome,
G. R. Baker, M. J. Saunders, P. S. Russo, V. K. Gupta, Z.-D. Yao,
J. E. Miller and K. J. Bouillion, J. Chem. Soc., Chem. Commun., 1986,
752; (c) W.-D. Jang, D.-L. Jiang and T. Aida, J. Am. Chem. Soc., 2000,
122, 3232; (d) W.-D. Jang and T. Aida, Macromolecules, 2003,
36, 8461; (e) Y. Ji, Y.-F. Luo, X.-R. Jia, E.-Q. Chen, Y. Huang, C. Ye,
B.-B. Wang, Q.-F. Zhou and Y. Wei, Angew. Chem., Int. Ed., 2005,
44, 6025; ( f ) W.-S. Li, X.-R. Jia, B.-B. Wang, Y. Ji and Y. Wei,
Tetrahedron, 2007, 63, 8794; (g) H. S. Ko, C. Park, S. M. Lee,
H. H. Song and C. Kim, Chem. Mater., 2004, 16, 3872.
7 (a) S. Yokoyama, A. Otomo, T. Nakahama, Y. Okuno and S. Mashiko,
Top. Curr. Chem., 2003, 228, 205; (b) X. Yang, G. Zhang and
D. Zhang, J. Mater. Chem., 2012, 22, 38; (c) Q. Chen, D. Zhang,
G. Zhang, X. Yang, Y. Feng, Q. Fan and D. Zhu, Adv. Funct. Mater.,
2010, 20, 3244; (d) X. Yang, G. Zhang, L. Li, D. Zhang, L. Chi and
D. Zhu, Small, 2012, 8, 578.
Fig. 5 Frequency dependence of the dynamic storage modulus (G0) and the loss
modulus (G00) of GO-based hydrogels in the presence of glucose cored dendron:
in the presence of GO gel (G0, pink; G00, cyan); in the absence of GO gel (G0, black;
G00, red).
While the presence of GO decreases the CGC values, the mechan-
ical strength increases for GO incorporated gel systems (for
example, G0 value changes from 34 747 to 190 071 Pa) (Fig. 5).
In conclusion, we have designed and synthesized a new
family of linear sugar based poly(aryl ether) dendrons that self-
assembled into gels at concentrations as low as 0.1% (w/v). The
gel fibers obtained from compounds I and II self-assembled
and stabilized most likely through the extensive H-bonding and
p–p interactions that are available in the gelator. The morphol-
ogies and microstructures of the gel systems strongly depend
upon the solvent milieu. We have presented a general method
to increase the mechanical strength of the glucose containing
poly(aryl ether) based gel by incorporating GO. The organogels
reported herein may find potential applications in pharmaceutical
science, in particular for designing drug delivery systems where
glucose based gels are routinely used.
8 (a) P. Rajamalli and E. Prasad, New J. Chem., 2011, 35, 1541;
(b) P. Rajamalli and E. Prasad, Org. Lett., 2011, 13, 3714; (c) P. Rajamalli
and E. Prasad, Soft Matter, 2012, 8, 8896; (d) P. Rajamalli and E. Prasad,
Langmuir, 2013, 29, 1609; (e) P. Rajamalli, S. Atta, S. Maity and E. Prasad,
Chem. Commun., 2013, 49, 1744.
9 (a) T. Shimizu and M. Masuda, J. Am. Chem. Soc., 1997, 119, 2812;
(b) J. H. Jung, G. John, M. Masuda, K. Yoshida, S. Shinkai and
T. Shimizu, Langmuir, 2001, 17, 7229; (c) N. Yan, G. He, H. Zhang,
L. Ding and Y. Fang, Langmuir, 2010, 26, 5909; (d) L. E. Buerkle,
R. Galleguillos and S. J. Rowan, Soft Matter, 2011, 7, 6984.
10 (a) B. Adhikari, J. Nanda and A. Banerjee, Chem. Eur. J., 2011, 17, 11488;
(b) B. Adhikari, A. Biswas and A. Banerjee, Langmuir, 2012, 28, 1460.
11 (a) C. N. R. Rao, A. K. Sood, K. S. Subrahmanyam and A. Govindaraj,
Angew. Chem., Int. Ed., 2009, 48, 7752; (b) K. P. Loh, Q. Bao, G. Eda
and M. Chhowalla, Nat. Chem., 2010, 2, 1015; (c) V. C. Tung, J. Kim,
L. J. Cote and J. Huang, J. Am. Chem. Soc., 2011, 133, 9262; (d) Y. Xu,
Q. Wu, Y. Sun, H. Bai and G. Shi, ACS Nano, 2010, 4, 7358.
12 (a) C. Huang, H. Bai, C. Li and G. Shi, Chem. Commun., 2011,
47, 4962; (b) H. Bai, C. Li, X. Wang and G. Shi, Chem. Commun.,
2010, 46, 2376; (c) H. Bai, C. Li, X. Wang and G. Shi, J. Phys. Chem. C,
2011, 115, 5545; (d) H. Huang, S. Lu¨, X. Zhang and Z. Shao, Soft
Matter, 2012, 8, 4609; (e) B. Adhikari and A. Banerjee, Soft Matter,
2011, 7, 9259.
We thank CSIR (02-0094-12-EMR-II), Govt. of India for
financial support.
Notes and references
1 (a) P. Terech and R. G. Weiss, Chem. Rev., 1997, 97, 3133;
(b) J. H. van Esch and B. L. Feringa, Angew. Chem., Int. Ed., 2000,
39, 2263; (c) O. Gronwald and S. Shinkai, Chem.–Eur. J., 2001, 7, 4328
and references therein.
c
6760 Chem. Commun., 2013, 49, 6758--6760
This journal is The Royal Society of Chemistry 2013