Biomimetic Synthesis of Natural and “Unnatural” Lignans
P. Eun-Jung, H. Ji-Young, L. S. Kook, J. Nutr. Biochem. 2006,
17, 356–362.
(4ϫ50 mL) and then the organic layer was washed with water and
saturated brine and dried with Na2SO4. The solvent was removed
under reduced pressure to give 9 (30 mg) as a red powder in quanti-
tative yield. The ESI-MS spectrum and NMR spectroscopic data
are in perfect agreement with literature data.[45]
[14] C. Spatafora, C. Tringali, Targets in Heterocyclic Systems.
Chemistry and Properties, 2007, vol. 11, pp. 284–312.
[15] S. A. Souza da Silva, A. L. Souto, M. de Fatima Agra, E. V.
Leitao da-Cunha, J. M. Barbosa-Filho, M. Sobral da Silva, R.
Braz-Filho, ARKIVOC 2004, 6, 54–58.
Synthesis of Mongolicumin
A (10): Compound 9 (23 mg,
[16] S. Shi, Y. Zhang, K. Huang, S. Liu, Y. Zhao, Food Chem. 2008,
0.06 mmol) was dissolved in ethyl acetate (50 mL) and added under
nitrogen to an aqueous solution of 2 sodium hydrogen carbonate
(100 mL). The solution was vigorously stirred for 2 h. Then the
organic layer, containing 10, after standard work-up, was recuper-
ated and furnished 9 (5 mg, conversion 80%). The aqueous phase
was acidified with 2 HCl until pH ≈ 2 and extracted with ethyl
acetate (3ϫ100 mL). The organic layer was washed with a solution
of NaHCO3 and saturated brine and dried with Na2SO4. The sol-
vent was removed under reduced pressure to give 10 (18 mg, 95%)
as a yellow-brown powder. The ESI-MS spectrum and NMR spec-
troscopic data are in perfect agreement with literature data.[46]
108, 402–406.
[17] T. Tanaka, A. Nishimura, Y. Kouno, G. Nonaka, C.-R. Yang,
Chem. Pharm. Bull. 1997, 45, 1596–1600.
[18] a) S. Maeda, H. Masuda, T. Tokoroyama, Chem. Pharm. Bull.
1994, 42, 2506–2513; b) S. Maeda, H. Masuda, T. Tokoroyama,
Chem. Pharm. Bull. 1995, 43, 935–940.
[19] I. Agata, T. Hatano, S. Nishibe, T. Okuda, Chem. Pharm. Bull.
1988, 36, 3223–3225.
[20] I. Agata, T. Hatano, S. Nishibe, T. Okuda, Phytochemistry
1989, 28, 2447–2450.
[21] R. S. Ward, Chem. Soc. Rev. 1982, 11, 75–125.
[22] M. Orlandi, B. Rindone, G. Molteni, P. Rummakko, G. Bru-
now, Tetrahedron 2001, 57, 371–378.
[23] A. Pelter, R. S. Ward, R. R. Rao, Tetrahedron 1985, 41, 2933–
Acknowledgments
2938.
[24] a) M. Bruschi, M. Orlandi, B. Rindone, P. Rummakko, L.
Zoia, J. Phys. Org. Chem. 2006, 19, 592–596; b) G. Lemière,
M. Gao, A. De Groot, R. Dommisse, J. Lepoivre, L. Pieters,
V. Buss, J. Chem. Soc. Perkin Trans. 1 1995, 1775–1779.
[25] S. M. O. Van Dyck, G. L. F. Lemière, T. H. M. Jonckers, R.
Dommisse, Molecules 2000, 5, 153–161.
[26] N. F. L. Moncado, R. Calheiros, S. M. Fiuza, F. Borges, A. Ga-
spar, J. Garrido, M. P. Marques, J. Mol. Model. 2007, 13, 865–
877.
This research was supported by a grant from the Università degli
Studi di Catania (Progetti di Ricerca di Ateneo, Catania, Italy) and
by Ministero dell’Università e della Ricerca (MIUR) (PRIN 2007,
Rome, Italy). The authors acknowledge Prof. Salvatore Sortino
(Università degli Studi di Catania) for determination of the fluores-
cence data. CPU time from the Italian supercomputing center CI-
NECA is also acknowledged.
[27] C. J. Houtman, Holzforschung 1999, 53, 585–589.
[28] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. N.
Teller, E. Teller, J. Chem. Phys. 1953, 21, 1087–1092.
[29] S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, Science 1983, 220,
671–680.
[1] R. D. Haworth, J. Chem. Soc. 1942, 448–456.
[2] a) G. P. Moss, Pure Appl. Chem. 2000, 72, 1493–1523; b) http://
www.chem.qmul.ac.uk/iupac/lignan/.
[3] D. R. Gang, A. T. Dinkova-Kostova, L. B. Davin, N. G. Lewis,
Phylogenetic links in plant defense systems: lignans, isoflavon-
oids, and their reductases, in: Phytochemicals for Pest Control,
ACS Symposium Series, 1997, vol. 658, pp. 58–89.
[4] J. S. Bose, V. Gangan, R. Prakash, S. K. Jain, S. K. Manna, J.
Med. Chem. 2009, 52, 3184–3190.
[5] a) S. Apers, A. Vlietinck, L. Pieters, Phytochem. Rev. 2004, 2,
201–207; b) S. Van Miert, S. Van Dyck, T. J. Schmidt, R. Brun,
A. Vlietinck, G. Lemiere, L. Pieters, Bioorg. Med. Chem. 2005,
13, 661–669; c) A. K. Prasad, V. Kumar, P. Arya, S. Kumar, R.
Dabur, N. Singh, A. K. Chhillar, G. L. Sharma, B. Ghosh, J.
Wengel, C. E. Olsen, V. S. Parmar, Pure Appl. Chem. 2005, 77,
25–40.
[6] S. Apers, D. Paper, J. Buergermeister, S. Baronikova, S.
Van Dyck, G. Lemiere, A. Vlietinck, L. Pieters, J. Nat. Prod.
2002, 65, 718–720.
[7] E. L. Ghisalberti, Phytomedicine 1997, 4, 151–166.
[8] J. L. Charlton, J. Nat. Prod. 1998, 61, 1447–1451.
[9] L. B. Davin, H.-B. Wang, A. L. Crowell, D. L. Bedgar, D. M.
Martin, S. Sarkanen, N. G. Lewis, Science 1997, 275, 362–366.
[10] L. Pieters, S. Van Dyck, M. Gao, R. Bai, E. Hamel, A. Vliet-
inck, G. Lemiere, J. Med. Chem. 1999, 42, 5475–5481.
[11] a) R. Kerbel, J. Folkman, Nat. Rev. Cancer 2002, 2, 727–739;
b) Y. Crawford, N. Ferrara, Cell Tissue Res. 2009, 335, 261–
269.
[12] a) V. Cardile, L. Lombardo, C. Spatafora, C. Tringali, Bioorg.
Chem. 2005, 33, 22–33; b) S. Grasso, L. Siracusa, C. Spatafora,
M. Renis, C. Tringali, Bioorg. Chem. 2007, 35, 137–152.
[13] a) F. M. Da Cunha, D. Duma, J. Assreuy, F. C. Buzzi, R. Ni-
ero, M. M. Campos, J. B. Calixto, Free Radical Res. 2004, 38,
1241–1253; b) Y.-T. Lee, M.-J. Don, P.-S. Hung, Y.-C. Shen, Y.-
S. Lo, K.-W. Chang, C.-F. Chen, L.-K. Ho, Cancer Lett. 2005,
223, 19–25; c) X. Debing, W. Dong, H. Yujun, X. Jiayin, Z.
Zhaoyang, L. Zengpeng, X. Jiang, Anti-Cancer Drugs 2006, 17,
753–762; d) H. H. Jin, P. H. Joo, C. Hwa-Jin, M. Hye-Young,
[30]
[31]
[32]
[33]
H. Ito, T. Miyazaki, M. Ono, H. Sakurai, Bioorg. Med. Chem.
1998, 6, 1051–1056.
Y. Kashiwada, K. F. Bastow, K.-H. Lee, Bioorg. Med. Chem.
Lett. 1995, 5, 905–908.
N. C. Birnberg, Q. Weng, H. Liu, J. Avruch, J. Kyriakis, PCT
Int. Appl. 2004, 36 pages; [Chem. Abstr. 2004, 141, 1222–1258].
L. Patsenker, A. Tatarets, O. Kolosova, O. Obukhova, Y. Povro-
zin, I. Fedyunyayeva, I. Yermolenko, E. Terpetschnig, Ann. N.
Y. Acad. Sci. 2008, 1130, 179–187.
[34]
[35]
C. Daquino, M. C. Foti, Tetrahedron 2006, 62, 1536–1547.
a) M. J. S. Dewar, E. G. Zoebisch, E. F. Healy, J. J. P. Stewart,
J. Am. Chem. Soc. 1985, 107, 3902–3909; b) M. J. S. Dewar, C.
Jie, J. Yu, Tetrahedron 1993, 49, 5003–5038.
[36]
[37]
P. Hohenberg, W. Kohn, Phys. Rev. B 1964, 136, 864–871.
a) A. D. Becke, Phys. Rev. A 1988, 38, 3098–3100; b) A. D.
Becke, J. Chem. Phys. 1993, 98, 5648–5652.
[38]
[39]
C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785–789.
P. J. Hay, W. R. Wadt, J. Chem. Phys. 1985, 82, 270–283; P. J.
Hay, W. R. Wadt, J. Chem. Phys. 1985, 82, 284–298; P. J. Hay,
W. R. Wadt, J. Chem. Phys. 1985, 82, 299–310.
[40]
[41]
W. Bors, C. Michel, K. Stettmaier, S. P. Kazazic´, L. Klasinc,
Croat. Chem. Acta 2002, 75, 957–964.
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Mont-
gomery Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M.
Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas,
J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C.
Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson,
P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rab-
uck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Or-
tiz, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komar-
omi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A.
Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M.
Eur. J. Org. Chem. 2009, 6289–6300
© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
6299