assignable to [Ce4L2 –2H * (C12H22O11)]2ꢂ demonstrated the
6
1 : 1 stoichiometric complexation behavior. The addition of all
the above mentioned mono-disaccharides did not cause any
obvious peaks corresponding to the host–guest species.
This work was supported by the National Natural Science
foundation of China (20801008 and 20871025) and the
Start-up Fund of The Dalian University of Technology.
Notes and references
z Crystal data of TE1: C170H156Ce4N28O36, M = 3727.71, monoclinic,
space group P21/n, black block, a = 24.009 (1), b = 37.450 (1),
c = 24.065(1) A, b = 92.650(2)1, V = 21614(1) A3, Z = 4, Dc =
1.146 g cmꢂ3, m(Mo-Ka) = 0.891 mmꢂ1, T = 180(2) K. 31 778 unique
reflections [Rint = 0.1333]. Final R1 [with I > 2s(I)] = 0.0849,
wR2 (all data) = 0.1991 for 2y = 471. CCDC number 705880.
1 (a) M. Mazik, Chem. Soc. Rev., 2009, 38, 935; (b) S. Striegler, Curr.
Org. Chem., 2003, 7, 81; (c) A. P. Davis and T. D. James, in
Fuctional Synthetic Receptors, ed. T. Schrader and A. D. Hamilton,
Wiley-VCH, Weinheim, Germany, 2005, pp. 45–109.
2 (a) Y. Ferrand, M. P. Crump and A. P. Davis, Science, 2007, 318,
619–622; (b) O. Francesconi, A. Ienco, G. Moneti, C. Nativi and
S. Roelens, Angew. Chem., Int. Ed., 2006, 45, 6693.
Fig. 3 Fluorescence responses of TE1 (red bars) and TE2 (blue bars)
for saccharides mentioned. Emission intensity was recorded at 525 nm
for TE1 (excited at 360 nm) or at 480 nm for TE2 (20 mM in
DMF/acetone solution’ 5 : 95, v/v, excited at 320 nm), respectively.
3 (a) N. Kamiya, M. Tominaga, S. Sato and M. Fujita, J. Am. Chem.
Soc., 2007, 129, 3816–3817; (b) C. He, Z. Li n, Z. He, C. Duan,
C. Xu, Z. Wang and C. Yan, Angew. Chem., Int. Ed., 2008, 47,
877–881.
4 (a) F. A. Quiocho, Pure Appl. Chem., 1989, 61, 1293–1306;
(b) N. K. Vyas, M. N. Vyas and F. A. Quiocho, Science, 1988,
242, 1290–1295.
5 (a) Fluorescence Spectroscopy, Imaging and Probes: New Tools in
Chemical, Physical and Life Sciences, ed. R. Kraayenhof,
A. J. W. G. Visser and H. C. Gerritscen, Springer-Verlag, Berlin,
2002; (b) N. Y. Edwards, T. W. Sager, J. T. McDevitt and
E. V. Anslyn, J. Am. Chem. Soc., 2007, 129, 13575.
6 (a) F. Zaubitzer, A. Buryak and K. Severin, Chem.–Eur. J., 2006,
12, 3928; (b) C. R. Yonzon, E. Jeoung, S. Zou, G. C. Schatz,
M. Mrksich and R. P. Van Duyne, J. Am. Chem. Soc., 2004, 126,
12669; (c) Y. Q. Chen, X. Z. Wang, X.-B. Shao, J. L. Hou,
X. Z. Chen, X. K. Jiang and Z. T. Li, Tetrahedron, 2004, 60, 10253.
7 (a) E. F. Gudgin Dickson, A. Pollak and E. P. Diamandis,
demonstrated the occurrence of 1 : 1 stoichiometric complexation
behavior with the association constants (log Kass) being
calculated as 4.05 for sucrose, maltose and trehalose on
average. Although it could not be proven beyond a shadow
of a doubt that the recognition of the saccharides occurred in
the cavity of the cage, the size-dependent affinities of Ce4L2
6
and Ce4L2 to different saccharides, as well as the stability of
6
corresponding host–guest species in solution all supported this
hypothesis.
ESI-MS spectra of TE1 in the presence of hexoses exhibited
two intense peaks at m/z = 1145.34 and 1085.63, respectively
(Fig. 4). The comparison of the peak at m/z = 1145.34 with
the simulation on the basis of natural isotopic abundances
revealed the presence of 1 : 1 stoichiometric host–guest species
J. Photochem. Photobiol., B, 1995, 27, 3; (b) J. C. G. Bunzli,
Acc. Chem. Res., 2006, 39, 53.
¨
[Ce4L1 –3H
*
(C6H12O6)]3ꢂ
.
The addition of smaller
6
8 (a) J. Xu and K. N. Raymond, Angew. Chem., Int. Ed., 2000, 39,
2745; (b) Y. B. Dong, P. Wang, J.-P. Ma, X. X. Zhao, H. Y. Wang,
B. Tang and R. Q. Huang, J. Am. Chem. Soc., 2007, 129, 4872.
9 J. Hamacek, G. Bernardinelli and Y. Filinchuk, Eur. J. Inorg.
Chem., 2008, 3419.
pentoses, xylose or ribose, or larger disaccharides did not
arouse any obvious peaks corresponding to the host–guest
species. In the spectra of TE2 with disaccharides including
sucrose, maltose and trehalose, the presence of peak at 1879.67
10 (a) S. T. D. F. Aull and H. P. Jenssen, Phys. Rev. B: Condens.
Matter, 1986, 34, 6640; (b) X.-L. Zheng, Y. Liu, M. Pan, X. Q. Lu,
¨
J. Y. Zhang, C. Y. Zhao, Y. X. Tong and C. Y. Su, Angew. Chem.,
Int. Ed., 2007, 46, 7399.
11 (a) S. T. Frey and W. D. Horrocks, Jr, Inorg. Chem., 1991, 30,
1073; (b) P. N. Hazin, J. W. Bruno and H. G. Brittain, Organo-
metallics, 1987, 6, 913; (c) H. Kunkely and A. Vogler,
J. Photochem. Photobiol., A, 2002, 151, 45.
12 C. Benelli and D. Gatteschi, Chem. Rev., 2002, 102, 2369.
13 R. L. Carlin, Magnetochemistry, Springer-Verlar Berlin,
Heidlberg, Germany, 1986.
14 G. Blasse, Struct. Bond, Springer, Berlin/Heidelberg, 1976, vol. 26,
p. 50.
15 K. A. Connors, Binding Contants, John Wiley, New York, 1987.
16 T. Gunnlaugsson, M. Glynn, G. M. Tocci (nee Hussey),
´
P. E. Kruger and F. M. Pfeffer, Coord. Chem. Rev., 2006, 250,
3094.
17 (a) P. Jiang and Z. Guo, Coord. Chem. Rev., 2004, 248, 205;
(b) M. Boiocchi, L. D. Boca, D. E. Gomez, L. Fabbrizzi,
´
Fig. 4 ESI-MS (a) of TE1 (0.1 mM) and (b) TE2 (0.1mM) in
DMF–methanol solution (containing 0.3 mM KOH) in the presence
of (a) Mannose (0.5 mM) and (b) maltose (0.5 mM), respectively. The
inserts exhibit the measured and simulated isotopic patterns (a) at
1145.34, and (b) at 1879.68.
M. Licchelli and E. Monzani, J. Am. Chem. Soc., 2004, 126, 16507.
18 (a) C. He, L. Y. Wang, Z. M. Wang, Y. Liu, C. S. Liao and
C. H. Yan, J. Chem. Soc., Dalton Trans., 2002, 134; (b) X. Guo,
G. Zhu, Q. Fang, M. Xue, G. Tian, J. Sun, X. Li and S. Qiu, Inorg.
Chem., 2005, 44, 3850.
ꢃc
This journal is The Royal Society of Chemistry 2009
7556 | Chem. Commun., 2009, 7554–7556