A R T I C L E S
Choi et al.
in the blood and cerebrospinal fluid (CSF).11,12,16-18 Although
TTR serves as the major carrier of thyroxine in the CSF, TTR
is a minor carrier in blood because of the presence of two other
T4 carrier proteins, thyroid binding globulin and albumin. Thus,
more than 99% of TTR’s T4 binding sites in the blood are
unoccupied.11
Amyloidogenesis of one of over 100 thermodynamically less
stable variants of TTR4,32,33 appears to cause familial amyloid
polyneuropathy (FAP), a peripheral neuropathy, often exhibiting
autonomic nervous system involvement.34 The most common
FAP variant is V30M-TTR, affecting largely the Portuguese,
Swedish, and Japanese populations.35-37 Central nervous system
selective amyloidosis (CNSA) appears to be a rarer disease
associated with the deposition of the most destabilized TTR
variants (e.g., A25T- and D18G-TTR) in the brain, but not in
the periphery.4,38,39 The choroid plexus secreting these variants
into the CSF appears to be a more permissive secretor of
unstable and misfolding-prone TTR variants than the liver,
which extensively degrades these highly destabilized variants
instead of secreting them into the blood, explaining why the
peripheral tissues are not subjected to A25T- and D18G-TTR
amyloidogenesis.4,38–40
There are currently no FDA-approved drugs or accepted
therapeutic strategies for treating SSA and FAC. The only
therapeutic strategy currently being practiced for ameliorating FAP
is gene therapy mediated by liver transplantation, wherein the
disease-associated TTR variant producing liver is replaced by a
WT-TTR producing liver, substantially reducing disease-associated
variant TTR levels in the blood.41-43 The drawbacks of utilizing
liver transplantation to treat FAP include the shortage of livers,
the significant surgical risk, life-long immune suppression require-
ments, and the expense. In addition, WT-TTR continues to deposit
in the heart post-transplantation, leading to cardiomyopathy,
suggesting an aging-associated decline in the proteostasis
capacity of the heart.1,2,44-46 Because of the limited applicability
of liver transplantation to treat the TTR amyloidoses (not
applicable to SSA, the disease with the most patients) and
especially the risk of death from transplant complications, it is
highly desirable to develop a general chemotherapeutic strategy
for ameliorating the TTR amyloidoses.11,47,48 Toward this end,
we have been developing kinetic stabilizers of TTR, small
molecules that differentially stabilize the native tetrameric structure
Transthyretin is one of more than 30 nonhomologous human
amyloidogenic proteins, whose misfolding and/or misassembly
appears to elicit the proteotoxicity and cell degeneration thought
to cause the amyloidoses.4,7,11,19 Amyloidogenesis from TTR
secreted by the liver appears to require rate-limiting tetramer
dissociation, which affords nonamyloidogenic folded monomers
that must undergo partial denaturation to misassemble into a
variety of aggregate structures, including cross-ꢀ-sheet amyloid
fibrils.20-25 TTR amyloidogenesis occurs by a thermodynami-
cally favorable or downhill aggregation reaction, and not by a
nucleated polymerization that governs many other amyloido-
genesis processes.26 Amyloidogenesis could also compete with
TTR monomer folding in the endoplasmic reticulum of hepa-
tocytes, although this source of proteotoxicity is still under
debate. The demonstrated effectiveness of a kinetic stabilizer
in a placebo-controlled clinical trial for polyneuropathy suggests
that dissociation of the TTR tetramer is the predominant process
that leads to TTR proteotoxicity.4 Accumulation of either wild
type (WT) TTR or mutant TTR aggregates outside of cells, and
possibly later inside certain cells, appears to cause the neuro-
degeneration and/or organ degeneration characteristic of the TTR
amyloidoses.
Amyloidogenesis of WT-TTR within the heart leads to the
sporadic amyloid disease, senile systemic amyloidosis (SSA),
a late onset cardiomyopathy that affects up to 20% of the aged
population.27-29 Familial amyloid cardiomyopathy (FAC) ap-
pears to be caused by the deposition of one of a few TTR
mutants within the heart, the most common variant deposited
being V122I-TTR, a mutation found in 3-4% of African
Americans that appears to confer complete penetrance of
FAC.30,31 Both SSA and FAC result from TTR proteotoxicity
in trans, as heart tissue does not synthesize TTR.
(32) Hammarstrom, P.; Jiang, X.; Hurshman, A. R.; Powers, E. T.; Kelly,
J. W. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 16427–32.
(33) Hurshman Babbes, A. R.; Powers, E. T.; Kelly, J. W. Biochemistry
2008, 47, 6969–84.
(34) Andrade, C. Brain 1952, 75, 408–27.
(16) White, J. T.; Kelly, J. W. Proc. Natl. Acad. Sci. U.S.A. 2001, 98,
13019–24.
(35) Plante-Bordeneuve, V.; Said, G. Curr. Opin. Neurol. 2000, 13, 569–
73.
(17) Wojtczak, A.; Luft, J.; Cody, V. J. Biol. Chem. 1992, 267, 353–7.
(18) Soprano, D. R.; Herbert, J.; Soprano, K. J.; Schon, E. A.; Goodman,
D. S. J. Biol. Chem. 1985, 260, 1793–8.
(36) Coelho, T.; Chorao, R.; Sausa, A.; Alves, I.; Torres, M. F.; Saraiva,
M. J. Neuromusc. Disord. 1996, 6, 27.
(37) Saraiva, M. J. Amyloid 2003, 10, 13–6.
(19) Reixach, N.; Deechongkit, S.; Jiang, X.; Kelly, J. W.; Buxbaum, J. N.
Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 2817–22.
(20) Colon, W.; Kelly, J. W. Biochemistry 1992, 31, 8654–60.
(21) Lai, Z.; Colon, W.; Kelly, J. W. Biochemistry 1996, 35, 6470–82.
(22) Lashuel, H. A.; Lai, Z.; Kelly, J. W. Biochemistry 1998, 37, 17851–
64.
(38) Sekijima, Y.; Hammarstrom, P.; Matsumura, M.; Shimizu, Y.; Iwata,
M.; Tokuda, T.; Ikeda, S.; Kelly, J. W. Lab. InVest. 2003, 83, 409–
17.
(39) Hammarstrom, P.; Sekijima, Y.; White, J. T.; Wiseman, R. L.; Lim,
A.; Costello, C. E.; Altland, K.; Garzuly, F.; Budka, H.; Kelly, J. W.
Biochemistry 2003, 42, 6656–63.
(23) Liu, K.; Cho, H. S.; Lashuel, H. A.; Kelly, J. W.; Wemmer, D. E.
Nat. Struct. Biol. 2000, 7, 754–7.
(40) Gambetti, P.; Russo, C. Nephrol. Dial. Transplant 1998, 13, 33–40.
(41) Holmgren, G.; Ericzon, B. G.; Groth, C. G.; Steen, L.; Suhr, O.;
Andersen, O.; Wallin, B. G.; Seymour, A.; Richardson, S.; Hawkins,
P. N. Lancet 1993, 341, 1113–6.
(24) Jiang, X.; Smith, C. S.; Petrassi, H. M.; Hammarstrom, P.; White,
J. T.; Sacchettini, J. C.; Kelly, J. W. Biochemistry 2001, 40, 11442–
52.
(42) Tan, S. Y.; Pepys, M. B.; Hawkins, P. N. Am. J. Kidney Dis. 1995,
26, 267–85.
(25) Palaninathan, S. K.; Mohamedmohaideen, N. N.; Snee, W. C.; Kelly,
J. W.; Sacchettini, J. C. J. Mol. Biol. 2008, 382, 1157–67.
(26) Hurshman, A. R.; White, J. T.; Powers, E. T.; Kelly, J. W. Biochemistry
2004, 43, 7365–81.
(43) Suhr, O. B.; Herlenius, G.; Friman, S.; Ericzon, B. G. LiVer Transplant
2000, 6, 263–76.
(44) Olofsson, B. O.; Backman, C.; Karp, K.; Suhr, O. B. Transplantation
2002, 73, 745–51.
(27) Westermark, P.; Bergstrom, J.; Solomon, A.; Murphy, C.; Sletten, K.
Amyloid 2003, 10, 48–54.
(45) Dubrey, S. W.; Davidoff, R.; Skinner, M.; Bergethon, P.; Lewis, D.;
Falk, R. H. Transplantation 1997, 64, 74–80.
(28) Westermark, P.; Sletten, K.; Johansson, B.; Cornwell, G. G. Proc.
Natl. Acad. Sci. U.S.A. 1990, 87, 2843–5.
(46) Yazaki, M.; Tokuda, T.; Nakamura, A.; Higashikata, T.; Koyama, J.;
Higuchi, K.; Harihara, Y.; Baba, S.; Kametani, F.; Ikeda, S. Biochem.
Biophys. Res. Commun. 2000, 274, 702–6.
(29) Buxbaum, J. N.; Tagoe, C. E. Annu. ReV. Med. 2000, 51, 543–69.
(30) Jiang, X.; Buxbaum, J. N.; Kelly, J. W. Proc. Natl. Acad. Sci. U.S.A.
2001, 98, 14943–8.
(47) Tojo, K.; Sekijima, Y.; Kelly, J. W.; Ikeda, S. I. Neurosci. Res. 2006,
56, 441–9.
(31) Jacobson, D. R.; Pastore, R. D.; Yaghoubian, R.; Kane, I.; Gallo, G.;
Buck, F. S.; Buxbaum, J. N. N. Engl. J. Med. 1997, 336, 466–73.
(48) Sekijima, Y.; Dendle, M. A.; Kelly, J. W. Amyloid 2006, 13, 236–49.
9
1360 J. AM. CHEM. SOC. VOL. 132, NO. 4, 2010