Table 1 Thermal stability of inter and intramolecular triplexesa
Triplex DNA binder Tm3 → 2/◦C Tm2 → 1/◦C
may be expanded considerably in scope, which is desirable in
other complex DNA-based reaction systems where precise control
of reactivity is required. Furthermore, the method provides a
new high-yielding method for the formation three-way branched
nonsymmetrical DNA sequences that each in principle may be
extended in a unique sequence, and could be useful in the
construction of DNA nanostructures.
Entry Triplex
1
2
3
4
O5+O7+O8
3
29.6
54.0
11.0
53.4
45.6
O5+O7+O8
O5+O7+O8
T1a
4
—
—
41.3
64.0
a Identical values were obtained for T2, T3 and T4 triplexes (T4 is formed
from O1+O2+O4).
Acknowledgements
Financial support for this work by the Danish National Research
Foundation, and the Carlsberg Foundation is gratefully acknowl-
edged.
The identity of the formed intramolecular triplexes was con-
firmed by MALDI-TOF MS, and they could readily be iso-
lated by RP-HPLC, and characterized by thermal denaturation
experiments. The intramolecular triplexes T1–T4 exhibit similar
melting behavior characterized by a weak Hoogsteen transition at
53 ◦C, much higher than their intermolecular counterparts (in the
abs◦ence of triplex binder), and a duplex/random coil transition at
64 C (Fig. 3 and Table 1). Notably, no hysteresis was observed
due to fast hybridization kinetics.
References
1 (a) Nucleic Acids in Chemistry and Biology, 3rd Ed. (Eds: G. M. Black-
burn, M. J. Gait, D. Loakes, D. M. Williams), Royal Society of
Chemistry, Cambridge, 2006; (b) Principles of Nucleic Acid Structure,
S. Neidle, Elsevier, 2008; (c) Proteins: Structure and Function, D. Whit-
ford, Wiley, Chichester, 2005.
2 Allosteric Regulatory Enzymes, T. Traut, Springer, New York, 2008.
3 M. J. Hannon, Chem. Soc. Rev., 2007, 36, 280–295.
4 (a) J. B. Chaires, J. Ren, M. Henary, O. Zegrocka, G. R. Bishop and L.
Strekowski, J. Am. Chem. Soc., 2003, 125, 7272–7283; (b) C. Escude´,
C. H. Nguyen, S. Kukreti, Y. Janin, J.-S. Sun, E. Bisagni, T. Garestier
and C. He´le`ne, Proc. Natl. Acad. Sci. U. S. A., 1998, 95, 3591–3596;
(c) J. S. Lee, L. J. P. Latimer and K. J. Hampel, Biochemistry, 1993,
32, 5591–5597; (d) W. D. Wilson, F. A. Tanious, S. Mizan, S. Yao,
A. S. Kiselyov, G. Zon and L. Strekowski, Biochemistry, 1993, 32,
10614–10621; (e) J. L. Mergny, G. Duval-Valentin, C. H. Nguyen, L.
Perrouault, B. Faucon, M. Rouge´e, T. Montenay-Garestier, E. Bisagni
and C. He´le`ne, Science, 1992, 256, 1681–1684.
5 B. P. Belotserkovskii, E. De Silva, S. Tornaletti, G. Wang, K. M. Vasquez
and P. C. Hanawalt, J. Biol. Chem., 2007, 282, 32433–32441.
6 Y. Chen and C. Mao, J. Am. Chem. Soc., 2004, 126, 13240.
7 D. R. Liu and X. Li, Angew. Chem., Int. Ed., 2004, 43, 4848–4870.
8 (a) B. N. Tse, T. M. Snyder, Y. Shen and D. R. Liu, J. Am. Chem. Soc.,
2008, 130, 15611–15626; (b) E. M. Driggers, S. P. Hale, J. Lee and N. K.
Terrett, Nat. Rev. Drug Discovery, 2008, 7, 608–624; (c) L. A. Haff,
C. G. M. Wilson, Y. Huang, B. K. Benton, J. F. Bond, A. M. Stern,
R. F. Begley and J. M. Coull, Clin. Chem., 2006, 52, 2147–2148.
9 J. E. Moses and A. D. Moorhouse, Chem. Soc. Rev., 2007, 36, 1249–
1262.
10 (a) F. Amblard, J. H. Cho and R. F. Schinazi, Chem. Rev., 2009, 109,
4207–4220; (b) P. M. E. Gramlich, C. T. Wirges, A. Manetto and T.
Carell, Angew. Chem., Int. Ed., 2008, 47, 8350–8358.
11 (a) Z. J. Gartner, R. Grubina, C. T. Calderone and D. R. Liu, Angew.
Chem., Int. Ed., 2003, 42, 1370–1375; (b) M. W. Kanan, M. M.
Rozenman, K. Sakurai, T. M. Snyder and D. R. Liu, Nature, 2004,
431, 545–549.
12 R. Kumar, A. El-Sagheer, J. Tumpane, P. Lincoln, L. M. Wilhelmsson
and T. Brown, J. Am. Chem. Soc., 2007, 129, 6859–6864.
13 A. H. El-Sagheer and T. Brown, J. Am. Chem. Soc., 2009, 131, 3958–
3964.
14 (a) R. L. Weller and S. R. Rajski, Org. Lett., 2005, 7, 2141–2144; (b) C. J.
Burrows and J. G. Muller, Chem. Rev., 1998, 98, 1109–1152.
15 W. G. Lewis, F. G. Magallon, V. V. Fokin and M. G. Finn, J. Am. Chem.
Soc., 2004, 126, 9152–9153.
16 T. R. Chan, R. Hilgraf, K. B. Sharpless and V. V. Fokin, Org. Lett.,
2004, 6, 2853–2855.
17 RP-HPLC analysis indicated that the observed non-quantitative con-
version is due to partial degradation of the oligonucleotides.
18 The higher propensity for oligomerisation of oligonucleotides carrying
Y1, Y2 groups compared to Z1, Z2 may be explained by the higher
acidity of the terminal alkynes.
Fig. 3 Thermal denaturation profiles of inter and intramolecular triplexes
at 260 nm (different absorbance scale for T1 and O5+O7+O8 triplexes).
These results are supported by the thermal denaturation profiles
of the triplex O5+O7+O8 (Fig. 3 and Table 1). Hence, the
3 → 2
Tm
value for the weak Hoogsteen transition (triplex/duplex
transition) in the absence of triplex binder is 11.0 ◦C, well below
room temperature, and only the duplex-directed reaction occurs.
On the other hand, in the presence of 4 it raises to 54.0 ◦C,
where stabilization is so pronounced that the Hoogsteen and
duplex/random coil transitions coincide,4d the triplex-directed
reaction is highly favored. Coralyne (3) provides less stabilization
(29.6 ◦C) with a broad Hoogsteen transition closer to room
temperature, and a less selective reaction ensues. Considerable
hysteresis of the melting curves was observed due to the slow
kinetics involved in the formation of intermolecular triplexes.4e
In summary, we have demonstrated the use of triplex DNA
binders as external stimuli for controlling chemical reactivity in
higher-order DNA-directed reactions. Thus, the efficient double
click reactions reported here could be controlled by simply adding
a strong triplex DNA binder such as naphthylquinoline (4), while
selectivity decreased with the weaker binder coralyne (3). Given
the huge number of small molecules available for binding and
stabilization of almost any DNA architecture, the methodology
19 (a) Z. J. Gartner, M. W. Kanan and D. R. Liu, Angew. Chem., Int. Ed.,
2002, 41, 1796; (b) Z. J. Gartner and D. R. Liu, J. Am. Chem. Soc.,
2001, 123, 6961.
52 | Org. Biomol. Chem., 2010, 8, 50–52
This journal is
The Royal Society of Chemistry 2010
©