JOURNAL OF
POLYMER SCIENCE
WWW.POLYMERCHEMISTRY.ORG
ARTICLE
TABLE 4 Electrochromic Properties of PEIs 6a, 6d, and 60d
Response Timeb
DODc
Qd (mC/cm2)
d
CEe (cm2/C)
a
Polymer
kmax (nm)
D%T
tc (s)
tb(s)
6d-p-doping
60d-p-doping
6a-n-doping
753
768
558
67
65
95
3
1
0.376
0.363
2.093
2.11
7.10
11.23
178
51
2.6
5.2
0.8
2.3
186
a
Wavelength of absorption maximum.
b
c
Time for 90% of the full-transmittance change.
Optical Density (DOD) 5 log[Tbleached/Tcolored], where Tcolored and
Tbleached are the maximum transmittance in the oxidized and neutral
states, respectively.
d
Qd is ejected charge, determined from the in situ experiments.
Coloration efficiency (CE) 5 DOD/Qd.
e
C. Huang, K.-R. Lee, J.-Y. Lai, C.-S. Ha, Prog. Polym. Sci. 2012,
37, 907–974.
changes at kmax 5 558 nm of PEI 6a while switching between
its colorless (neutral) and pink (reduced) states in 0.1 M
Bu4NClO4/DMF by applying a potential step between 0.00
and 21.45 V (vs. Ag/AgCl). The electrochromic properties of
the 6a film during n-doping processes are also summarized
in Table 4. In general, the cathodically coloring switching is
less stable than the anodically coloring switching for this PEI
film. A faster decay in optical contrast and an earlier delami-
nation of the polymer film were usually observed for these
PEIs during the cathodically switching experiments.
2 For review papers: see (a) S. J. Huang, A. E. Hoyt, TRIP 1995,
3, 262–271; (b) J. de Abajo, J. G. de la Campa, Adv. Polym. Sci.
1999, 140, 23–59; (c) M. Ding, Prog. Polym. Sci. 2007, 32, 623–
668; (d) M. G. Dhara, S. Banerjee, Prog. Polym. Sci. 2010, 35,
1022–1077.
3 For selected examples: see (a) S.-H. Hsiao, K.-H. Lin, J.
Polym. Sci. Part A: Polym. Chem. 2005, 43, 331–341; (b) S. M.
Kwak, J. H. Yeon, T. H. Yoon, J. Polym. Sci. Part A: Polym.
Chem. 2006, 44, 2567–2578; (c) Y.-T. Chern, J.-Y. Tsai, J.-J.
Wang, J. Polym. Sci. Part A: Polym. Chem. 2009, 47, 2443–
2452; (d) C. W. Chung, C. H. Lin, P. W. Cheng, H. J. Hwang, S.
Dai, J. Polym. Sci. Part A: Polym. Chem. 2009, 47, 2486–2499;
(e) S. J. Zhang, Y. F. Li, T. Ma, J. J. Zhao, X. Y. Xu, F. C. Yang,
X. Y. Xiang, Polym. Chem. 2010, 1, 485–493; (f) Y. Liu, Y. Xing,
Y. H. Zhang, S. W. Guan, H. B. Zhang, Y. Wang, Y. P. Wang, Z.
H. Jiang, J. Polym. Sci. Part A: Polym. Chem. 2010, 48, 3281–
3289; (g) M. Calle, A. E. Lozano, J. G. de la Campa, J. de Abajo,
Macromolecules 2010, 43, 2268–2275; (h) C. H. Lin, S. L. Chang,
P. W. Cheng, J. Polym. Sci. Part A: Polym. Chem. 2011, 49,
1331–1340; (i) H. B. Wei, X. L. Pei, X. Z. Fang, J. Polym. Sci.
Part A: Polym. Chem. 2011, 49, 2484–2494; (j) S.-H. Hsiao, H.-M.
Wang, W.-J. Chen, T.-M. Lee, C.-M. Leu, J. Polym. Sci. Part A:
Polym. Chem. 2011, 49, 3109–3120; (k) Y. J. Hou, G. F. Chen, X.
L. Pei, X. Z. Fang, J. Polym. Res. 2012, 19, 9955.
CONCLUSIONS
Herein, we synthesized and characterized a series of electro-
active PEIs from 4,40-bis(p-aminophenoxy)triphenylamine
and various aromatic dianhydrides. Insertion of a phenoxy
spacer between the TPA unit and the imide ring decreases
the oxidation potentials and increases the electrochemical
stability of the polyimides. All the PEIs exhibit an ambipolar
electrochemical and electrochromic behavior. When the poly-
mer film was subjected to a repeated cyclic scan between 0
and 1.1 V, an electrochemical coupling reaction between the
TPA units occurred which may lead to a partially crosslinked
film. The PEI films exhibit reversible electrochemical oxida-
tion accompanied by strong color changes that can be
switched through modulation of the applied potential. Thus,
these characteristics suggest that these PEIs may find appli-
cations in electrochromic devices.
4 (a) A. Ito, H. Ino, K. Tanaka, K. Kanemoto, T. Kato, J. Org.
Chem. 2002, 67, 491–498; (b) E. Fukuzaki, H. Nishide, Org. Lett.
2006, 8, 1835–1838.
5 (a) Y. Shirota, J. Mater. Chem. 2000, 10, 1–25; (b) Y. Shirota,
J. Mater. Chem. 2005, 15, 75–93; (c) Y. Shirota, H. Kageyama,
Chem. Rev. 2007, 107, 953–1010.
6 M. Thelakkat, Macromol. Mater. Eng. 2002, 287, 442–461.
7 C. W. Tang, S. A. VanSlyke, Appl. Phys. Lett. 1987, 51, 913–
915.
REFERENCES AND NOTES
1 (a) Polyimides; D. Wilson, H. D. Stenzenberger, P. M. Her-
genrother, Eds.; Blackie: Glasgow and London, 1990; (b) C. E.
Sroog, Prog. Polym. Sci. 1991, 16, 561–694; (c) Polyimides: Fun-
damentals and Applications; M. K. Ghosh, K. L. Mittal, Eds.;
Marcel Dekker: New York, 1996; (d) D.-J. Liaw, K.-L. Wang, Y.-
8 (a) R. Tang, Z. Tan, Y. Li, F. Xi, Chem. Mater. 2006, 18, 1053–
1061; (b) Y.-H. Kim, Q. Zhao, S.-K. Kwon, J. Polym. Sci. Part A:
Polym. Chem. 2006, 44, 172–182; (c) Q. Kong, D. Zhu, Y. Quan,
Q. Chen, J. Ding, J. Lu, Y. Tao, Chem. Mater. 2007, 19, 3309–
3318; (d) J. A. Mikroyannidis, K. M. Gibbons, A. P. Kulkarni, S.
WWW.MATERIALSVIEWS.COM
JOURNAL OF POLYMER SCIENCE, PART A: POLYMER CHEMISTRY 2013, 51, 2925–2938
2937