Table 3 Reuse of CuO on mesoporous silicaa
T. Ogata, M. Terada, H. Sano and T. Migita, Bull. Chem. Soc.
Jpn., 1985, 58, 3657; (c) T. Itoh and T. Mase, Org. Lett., 2004, 6,
4587; (d) C. Mispelaere-Canivet, J.-F. Spindler, S. Perrio and
Run
1
2
3
4
P. Beslin, Tetrahedron, 2005, 61, 5253; (e) M. A. Ferna
Rodrıguez, Q. Shen and J. F. Hartwig, J. Am. Chem. Soc., 2006,
128, 2180; (f) M. A. Fernandez-Rodrıguez, Q. Shen and
J. F. Hartwig, Chem.–Eur. J., 2006, 12, 7782; (g) M. A. Fernandez-
Rodrıguez and J. F. Hartwig, J. Org. Chem., 2009, 74, 1663;
´
ndez-
Yield (%)
85
83
78
78
´
a
´
´
After 21 h, the reaction mixture was diluted with H2O and ethyl
acetate, the catalyst was recovered by centrifugation and then dried in
an oven.
´
´
(h) E. Alvaro and J. F. Hartwig, J. Am. Chem. Soc., 2009, 131,
7858, and references therein.
Furthermore, electron-rich 4-iodoanisole could be coupled
in good yields (entries 15 and 20), which was in contrast to
CuO-nanoparticles.11,12
4 V. Percec, J.-Y. Bae and D. H. Hill, J. Org. Chem., 1995, 60, 6895;
Y. Zhang, K. N. Ngeow and J. Y. Ying, Org. Lett., 2007, 9, 3495.
5 Y.-C. Wong, T. T. Jayanth and C.-H. Cheng, Org. Lett., 2006, 8,
5613.
We next carried out the reactions using 1a and 2a as the
model to test the recyclability of CuO on mesoporous silica.
The results in Table 3 show the catalyst could be reused several
runs without loss of reactivity. According to the EDS analysis,
the Cu/Si atomic ratio of the sample before and after the
fourth run were almost the same (E1/20). From the TEM
images of the CuO on mesoporous silica after the fourth
reaction (Fig. S4, see ESIw), the mesostructures were clearly
visible and the presence of CuO nanoparticles (from aggregation)
were rarely found. These results indicated that the CuO active
sites remained highly stabilized on the mesoporous silica
during multiple catalytic trials.
6 J.-R. Wu, C.-H. Lin and C.-F. Lee, Chem. Commun., 2009, 4450.
7 A. Correa, M. Carril and C. Bolm, Angew. Chem., Int. Ed., 2008,
47, 2880. The purity of FeCl3 is important in this work, see ref. 9n.
8 V. P. Reddy, K. Swapna, A. V. Kumar and K. R. Rao, J. Org.
Chem., 2009, 74, 3189.
9 For selected examples, see: (a) P. S. Herradura, K. A. Pendola and
R. K. Guy, Org. Lett., 2000, 2, 2019; (b) C. Palomo, M. Oiarbide,
´ ´
R. Lopez and E. Gomez-Bengoa, Tetrahedron Lett., 2000, 41,
1283; (c) C. G. Bates, R. K. Gujadhur and D. Venkataraman,
Org. Lett., 2002, 4, 2803; (d) F. Y. Kwong and S. L. Buchwald,
Org. Lett., 2002, 4, 3517; (e) C. Savarin, J. Srogl and
L. S. Liebeskind, Org. Lett., 2002, 4, 4309; (f) S. V. Ley and
A. W. Thomas, Angew. Chem., Int. Ed., 2003, 42, 5400;
(g) C. G. Bates, P. Saejueng, M. Q. Doherty and
D. Venkataraman, Org. Lett., 2004, 6, 5005; (h) Y.-J. Chen and
H.-H. Chen, Org. Lett., 2006, 8, 5609; (i) D. Zhu, L. Xu, F. Wu
and B. S. Wan, Tetrahedron Lett., 2006, 47, 5781; (j) X. Lv and
W. Bao, J. Org. Chem., 2007, 72, 3863; (k) M. Carril,
In conclusion, for the first time well dispersed CuO on
mesoporous silica with large surface area and robust active
sites has been prepared, by using natural polymer gelatin at
neutral pH. In addition, the CuO active sites were readily
accessible and are shown to be highly active catalysts for
coupling reactions between thiols and aryl iodides under
ligand-free conditions. Based on the high chelating capability
of the mesoporous silica to metal ions, we propose that
mesoporous silica can be used in a variety of other catalytic
applications.
R. SanMartin, E. Domınguez and I. Tellitu, Chem.–Eur. J.,
´
2007, 13, 5100; (l) A. K. Verma, J. Singh and R. Chaudhary,
Tetrahedron Lett., 2007, 48, 7199; (m) E. Sperotto, G. P. M.
V. Klink, J. G. de Vries and G. V. Koten, J. Org. Chem., 2008,
73, 5625; (n) S. L. Buchwald and C. Bolm, Angew. Chem., Int. Ed.,
2009, 48, 5586; (o) P.-F. Larsson, A. Correa, M. Carril,
P.-O. Norrby and C. Bolm, Angew. Chem., Int. Ed., 2009, 48, 5691.
10 A. Alimardanov, L. Schmieder-van de Vondervoort, A. M. H.
de Vries and J. G. De Vries, Adv. Synth. Catal., 2004, 346, 1812.
11 L. Rout, T. K. Sen and T. Punniyamurthy, Angew. Chem., Int. Ed.,
2007, 46, 5583; S. Jammi, S. Sakthivel, L. Rout, T. Mukherjee,
S. Mandal, R. Mitra, P. Saha and T. Punniyamurthy, J. Org.
Chem., 2009, 74, 1971.
12 V. P. Reddy, K. Swapna, A. V. Kumar and K. R. Rao, J. Org.
Chem., 2009, 74, 3189; V. P. Reddy, A. V. Kumar, K. Swapna and
K. R. Rao, Org. Lett., 2009, 11, 1697.
13 S. Minakata and M. Komatsu, Chem. Rev., 2009, 109, 711;
B. Coasne, A. Mezy, R. J. M. Pellenq, D. Ravot and
J. C. Tedenac, J. Am. Chem. Soc., 2009, 131, 2185; Y. Wan,
H. Wang, Q. Zhao, M. Klingstedt, O. Terasaki and D. Zhao,
J. Am. Chem. Soc., 2009, 131, 4541.
The National Science Council, Taiwan (NSC 97-2113-M-
005-006-MY2 and NSC95-2113-M-006-011-MY3); the
National Chung Hsing University and Landmark Project of
National Cheng Kung University are gratefully acknowledged
for the financial support. We thank Prof. Fung-E Hong for use
of GC-MS.
Notes and references
1 For review, see: T. Kondo and T.-a. Mitsudo, Chem. Rev., 2000,
100, 3205.
14 (a) C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli and
J. S. Beck, Nature, 1992, 359, 710; (b) T. Yanagisawa, T. Shimizu,
K. Kuroda and C. Kato, Bull. Chem. Soc. Jpn., 1990, 63, 988;
(c) D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson,
B. F. Chmelka and G. D. Stucky, Science, 1998, 279, 548;
(d) J. Y. Ying, C. P. Mehnert and M. S. Wong, Angew. Chem.,
Int. Ed., 1999, 38, 56; (e) P. T. Tanev and T. J. Pinnavaia, Science,
1996, 271, 1267.
2 G. Liu, J. R. Huth, E. T. Olejniczak, R. Mendoza, P. De Vries,
S. Leitza, E. B. Reilly, G. F. Okasinski, S. W. Fesik and T. W. von
Geldern, J. Med. Chem., 2001, 44, 1202; G. De Martino, G. La
Regina, A. Coluccia, M. C. Edler, M. C. Barbera, A. Brancale,
E. Wilcox, E. Hamel, M. Artico and R. Silvestri, J. Med. Chem.,
2004, 47, 6120.
3 (a) T. Migita, T. Shimizu, Y. Asami, J. Shiobara, Y. Kato and
M. Kosugi, Bull. Chem. Soc. Jpn., 1980, 53, 1385; (b) M. Kosugi,
15 H. P. Lin and C. Y. Mou, Acc. Chem. Res., 2002, 35, 927.
ꢁc
This journal is The Royal Society of Chemistry 2010
284 | Chem. Commun., 2010, 46, 282–284