H. Khanmohammadi, M. Erfantalab / Spectrochimica Acta Part A 75 (2010) 127–133
133
[6] P.A. Vigato, S. Tamburini, Coord. Chem. Rev. 252 (2008) 1871.
[7] H. Okawa, H. Furutachi, D.E. Fenton, Coord. Chem. Rev. 174 (1998) 51.
[8] P.G. Cozzi, Chem. Soc. Rev. 33 (2004) 410.
[9] G. Grigoropoulou, J.H. Clark, J.A. Elings, Green Chem. 5 (2003) 1.
[10] R.A. Sheldon, J.K. Kochi, Metal-catalysed Oxidations of Organic Compounds,
Academic Press, New York, 1981.
[11] M. Hudlick, Oxidation in Organic Chemistry, ACS Monographs 186. Washington,
DC, 1990.
[12] S. Brooker, Eur. J. Inorg. Chem. (2002) 2535.
[13] M.W. Glenny, L.G.A. Water, J.M. Vere, A.J. Blake, C. Wilson, W.L. Driessen, J.
Reedijk, M. Schroder, Polyhedron 25 (2006) 599.
[14] S. Roy, T.N. Mandal, A.K. Barik, S. Pal, S. Gupta, A. Hazra, A.J. Butcher, A.D. Hunter,
M. Zeller, S.K. Kar, Polyhedron 26 (2007) 2603.
[15] A.D. Naik, S.M. Annigeri, U.B. Gangadharmath, V.K. Revankar, V.B. Mahale, Spec-
trochim. Acta A 58 (2002) 1713.
[16] H. Khanmohammadi, M.H. Abnosi, A. Hosseinzadeh, M. Erfantalab, Spec-
trochim. Acta A 71 (2008) 1474.
[17] G. Mohamed, Spectrochim. Acta A 64 (2006) 188.
[18] M. Odabas¸ og˘lu, C¸ . Albayrak, R. Özkanca, F.Z. Aykan, P. Lonecke, J. Mol. Struct.
840 (2007) 71.
[19] M. Koca, S. Servi, C. Kirilmis, M. Ahmedzade, C. Kazaz, B. Özbek, G. Ötük, Eur. J.
Med. Chem. 40 (2005) 1351.
[20] L. Dha, S. Yadav, S. Dubey, B.S. Yadav, Tetrahedron 59 (2003) 5411.
[21] L. Dha, S. Yadav, R. Kapoor, Tetrahedron Lett. 44 (2003) 8951.
[22] H. Naeimi, F. Salimi, K. Rabiei, J. Mol. Catal. A 260 (2006) 100.
[23] T.R. Van den Ancker, G.W.V. Cave, C.L. Raston, Green Chem. 8 (2006) 50.
[24] R. Ditchfield, Mol. Phys. 27 (1974) 789.
[25] K. Wolinski, J.F. Hinton, P. Pulay, J. Am. Chem. Soc. 112 (1990) 8251.
[26] T.A. Keith, R.F.W. Bader, Chem. Phys. Lett. 194 (1992) 1.
[27] T.A. Keith, R.F.W. Bader, Chem. Phys. Lett. 210 (1993) 223.
[28] V. Prakash Reddy, G. Rasul, G.K. Surya Prakash, G.A. Olah, J. Org. Chem. 68 (2003)
3507.
Fig. 7. Plot of experimental chemical shifts vs. magnetic isotropic shielding tensors
from the CSGT B3LYP/6-311++G* calculation: (a) H2L1 and (b) H2L2.
5. Conclusion
[29] A.R. Katritzky, N.G. Akhmedov, A. Güven, J. Doskocz, R.G. Akhmedova, S.
Majumder, C. Dennis Hall, J. Mol. Struct. 787 (2006) 131.
[30] Z. Meng, W.R. Carper, J. Mol. Struct. (Theochem.) 588 (2002) 45.
[31] A.J. Gallant, J.K.H. Hui, F.E. Zahariev, Y.A. Wang, M.J. MacLachlan, J. Org. Chem.
70 (2005) 7936.
During this feasibility study, we found that solvent-free PPE-
catalyzed method is a general, eco-friendly and straightforward
method for the library synthesis of pyridazine-based Schiff bases
(H2Ln, n = 1–5 and H4L). The acid–base behavior of H2L2 and H2L3 in
DMSO/water (1:1) solution indicated that each two identical pro-
tons from both sides of the molecule are liberated at basic condition.
The 13C NMR chemical shieldings of gas phase H2L1 and H2L2
were systematically studied by GIAO/DFT and CSGT/DFT meth-
ods. The CSGT 13C relative shift values correlate better with the
experimental ones than the GIAO. The proposed approach can be
potentially useful in an extended way to predict the chemical shifts
of the heterocycle-based Schiff bases.
[32] H. Khanmohammadi, H. Keypour, M. Salehei Fard, M.H. Abnosi, J. Incl. Phenom.
Macrocycl. Chem. 63 (2009) 97.
[33] H. Yüksek, M. Alkan, S¸ . Bahc¸ eci, I. Cakmak, Z. Ocak, H. Baykara, O. Aktas¸ , E. Ag˘yel,
J. Mol. Struct. 873 (2008) 142.
[34] J.F. Larrow, E.N. Jacobsen, J. Org. Chem. 59 (1994) 1939.
[35] S.S. Tandon, L.K. Thampson, J.N. Bridson, Inorg. Chem. 32 (1993) 32.
[36] L.A. Dixon, in: L. Paquette (Ed.), Encyclopedia of Reagents for Organic Synthesis,
vol. 6, Wiley, Chichester, 1995, p. 4166.
[37] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman,
J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar,
J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson,
H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T.
Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian,
J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J.
Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A.
Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels,
M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman,
J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A.
Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham,
C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen,
M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian 03, Gaussian Inc., Pittsburgh, PA,
USA, 2003.
Acknowledgment
We are grateful to the Arak University for financial support of
this work.
References
[38] HyperChem. Release 5.02, Hypercube, Inc., Gainesville, 1997.
[39] H. Khanmohammadi, M. Darvishpour, Dyes Pigments 81 (2009) 167.
[40] M.S. Karthikeyan, D.J. Prasad, B. Poojary, K.S. Bhat, B.S. Holla, N.S. Kumari,
Bioorg. Med. Chem. 14 (2006) 7482.
[41] M. El-Behery, H. El-Twigry, Spectrochim. Acta A 66 (2007) 28.
[42] A.M. Khedr, M. Gaber, R.M. Issa, H. Erten, Dyes Pigments 67 (2005) 117.
[1] N.E. Borisova, M.D. Reshetova, Y.A. Ustynyuk, Chem. Rev. 107 (2007) 46.
[2] P.A. Vigato, S. Tamburini, L. Bertolo, Coord. Chem. Rev. 251 (2007) 1311.
[3] U. Beckmann, S. Brooker, Coord. Chem. Rev. 245 (2003) 17.
[4] W. Radecka-Paryzek, V. Patroniak, J. Lisowski, Coord. Chem. Rev. 249 (2005)
2156.
[5] E. Bouwman, J. Reedijk, Coord. Chem. Rev. 249 (2005) 1555.