C O M M U N I C A T I O N S
Table 2. Oxidative Aza-Henry Reaction
of nitro compounds other than those conveniently used as the solvent
also cleanly provide the desired product using DMF as solvent.
In summary, we have reported an operationally simple method for
the oxidative coupling of nitroalkanes with tertiary N-arylamines using
visible-light photoredox catalysis. Importantly, the reaction proceeds
in high chemical yield using only 1 mol % Ir(III) catalyst and visible
light without the need for an external oxidant. Further studies expanding
upon the scope of this transformation as well as further mechanistic
investigations are currently underway.
Acknowledgment. Boston University and the Department of
Chemistry are gratefully acknowledged for financial support.
Acknowledgment is made to the donors of the American Chemical
Society Petroleum Research Fund (48479-G1) for partial support
of this research. NMR (CHE-0619339) and MS (CHE-0443618)
facilities at BU are supported by the NSF. The authors thank
Professor John Porco (Boston University) and Professor Peter Wipf
(University of Pittsburgh) for critical comments on this manuscript.
Supporting Information Available: Experimental procedures and
1H and 13C NMR spectra for all new compounds. This material is
References
(1) (a) Li, C.-J. Acc. Chem. Res. 2009, 42, 335. (b) Murahashi, S.-I.; Zhang,
D. Chem. Soc. ReV. 2008, 37, 1490.
(2) Narayanam, J. M. R.; Tucker, J. W.; Stephenson, C. R. J. J. Am. Chem.
Soc. 2009, 131, 8756.
2+
(3) For reviews of the photochemistry and photophysics of Ru(bpy)3 and
related complexes, see: (a) Kalyanasundaram, K. Coord. Chem. ReV. 1982,
46, 159. (b) Juris, A.; Balzani, V.; Barigelletti, F.; Campagna, S.; Belser,
P.; von Zelewsky, A. Coord. Chem. ReV. 1988, 84, 85.
a Isolated yield after purification on SiO2. b Conditions: 4 (1.0 mol
%), visible light, CH3NO2, rt. c dr ) 2:1. d dr ) 2.3:1. e Conversion )
(4) (a) Nicewicz, D. A.; MacMillan, D. W. C. Science 2008, 322, 77. (b) Ischay,
M. A.; Anzovino, M. E.; Du, J.; Yoon, T. P. J. Am. Chem. Soc. 2008, 130,
12886. (c) Koike, T.; Akita, M. Chem. Lett. 2009, 38, 166. (d) Nagib, D. A.;
Scott, M. E.; MacMillan, D. W. C. J. Am. Chem. Soc. 2009, 131, 10875. (e)
Du, J.; Yoon, T. P. J. Am. Chem. Soc. 2009, 131, 14604. (f) Tucker, J. W.;
Narayanam, J. M. R.; Krabbe, S. W.; Stephenson, C. R. J. Org. Lett. 2010, 12,
368.
40% as determined by crude H NMR analysis. f See ref 15.
1
Scheme 2. Plausible Mechanism
(5) (a) Shono, T.; Matsumura, Y.; Tsubata, K. J. Am. Chem. Soc. 1981, 103,
1172. (b) Murahashi, S.-I. Angew. Chem., Int. Ed. Engl. 1995, 34, 2443.
(c) Kalyanasundaram, K.; Kiwi, J.; Gra¨tzel, M. HelV. Chim. Acta 1978,
61, 2720. (d) DeLaive, P. J.; Sullivan, B. P.; Meyer, T. J.; Whitten, D. G.
J. Am. Chem. Soc. 1979, 101, 4007. (e) Nelson, S. F.; Ippoliti, T. J. J. Am.
Chem. Soc. 1986, 108, 4879.
(6) (a) Arraya´s, R. G.; Carretero, J. C. Chem. Soc. ReV. 2009, 38, 1940. (b)
Li, Z.; Li, C.-J. J. Am. Chem. Soc. 2005, 127, 3672. (c) Basle, O.; Li, C.-J.
Green Chem. 2007, 9, 1047.
(7) (a) Murahashi, S.-I.; Nakae, T.; Terai, H.; Komiya, N. J. Am. Chem. Soc.
2008, 130, 11005. (b) Murahashi, S.-I.; Komiya, N.; Terai, H. Angew.
Chem., Int. Ed. 2005, 44, 6931. (c) Murahashi, S.-I.; Komiya, N.; Terai,
H.; Nakae, T. J. Am. Chem. Soc. 2003, 125, 15312.
oxygen.16 This radical anion may abstract a hydrogen atom from the
trialkylammonium radical cation to form the desired iminium ion, 8.2
Addition of 9 to the iminium forms the observed product.
The product of nitromethane reduction is presumably nitrosomethane
(or the oxime tautomer), neither of which were we able to observe in our
reactions. We reasoned that the use of a less volatile nitro compound could
provide evidence in favor of our proposed mechanism. Treatment of 11
with PhCH2NO2 (5 equiv) in DMF in the presence of Ir(dtbbpy)(ppy)2PF6
(1 mol %) and visible light resulted in full conversion to the desired
oxidative coupling product 12 (5:1 dr) (eq 1):17
(8) (a) Basle, O.; Li, C.-J. Chem. Commun. 2009, 4124. (b) Li, Z.; Bohle, S.;
Li, C.-J. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 9828.
(9) Sud, A.; Sureshkumar, D.; Klussmann, M. Chem. Commun. 2009, 3169.
(10) Shu, X.-Z.; Xia, X.-F.; Yang, Y.-F.; Ji, K.-G.; Liu, X.-Y.; Liang, Y.-M. J.
Org. Chem. 2009, 74, 7464.
(11) For a review of photoactive iridium complexes, see: Flamigni, L.; Barbieri,
A.; Sabatini, C.; Ventura, B.; Barigelletti, F. Top. Curr. Chem. 2007, 281, 143.
(12) For the preparation of Ir(ppy)2(dtbbpy)PF6, see: Slinker, J. D.; Gorodetsky,
A. A.; Lowry, M. S.; Wang, J.; Parker, S.; Rohl, R.; Bernhard, S.; Malliaras,
G. G. J. Am. Chem. Soc. 2004, 126, 2763.
(13) Bock, C. R.; Connor, J. A.; Gutierrez, A. R.; Meyer, T. J.; Whitten, D. G.;
Sullivan, B. P.; Nagle, J. K. J. Am. Chem. Soc. 1979, 101, 4815.
(14) See the Supporting Information for details.
(15) N-Aryltetrahydroisoquinolines were prepared via Buchwald-Hartwig
coupling (see: Kwong, F. Y.; Klapars, A.; Buchwald, S. L. Org. Lett. 2002,
4, 581). For an alternative approach to N-arylation, see: Barker, T. J.; Jarvo,
E. R. J. Am. Chem. Soc. 2009, 131, 15598.
(16) An insightful reviewer suggested that this reaction may be mediated by singlet
O2 sensitization by 4 (see: Demas, J. N.; Harris, E. W.; McBride, R. P. J. Am.
Chem. Soc. 1977, 99, 3547). Initial mechanistic investigations provided the
following data for the known singlet O2-mediated oxidation of dibenzylamine
to the corresponding imine (see: Jiang, G.; Chen, J.; Huang, J.-S.; Che, C.-M.
Org. Lett. 2009, 11, 4568): Using 4 under an oxygen atmosphere, we
observed only 12% conversion of dibenzylamine to its imine after 12 h
(cf. TPP, O2, 10-14 h). In contrast, we found that TPP is capable of
mediating the oxidative aza-Henry reaction of 1, but the reaction required
72 h for complete conversion compared with only 10 h under our conditions
using 4. See the Supporting Information for further details.
1
We did not observe the presence of 13 by H NMR analysis of the
crude reaction mixture, indicating that catalyst turnover may proceed
via reaction with oxygen. However, rigorous degassing of the reaction
in eq 1 also resulted in clean formation of 12, albeit with an attenuated
rate, suggesting that the nitroalkane may also play a role in catalyst
turnover. Importantly, these experiments demonstrate that the reaction
(17) Full conversion of 11 to 12 was observed by crude 1H NMR analysis, but
12 was not stable under purification by chromatography.
JA909145Y
9
J. AM. CHEM. SOC. VOL. 132, NO. 5, 2010 1465