X. Zhang et al. / Tetrahedron Letters 51 (2010) 600–601
601
of the C3 ethyl ester moiety in dilute hydrochloric acid.8
(Scheme 2)
In summary, the intermediate 1, crucial for divergent synthesis
of various C7-substituted fluoroquinolone compounds for
extensive SAR studies, has been synthesized in six steps with a
14% overall yield. Although the overall yield is lower than that of
the eight-step sequence in the literature (i.e., 31%),5e this synthesis
provides a convenient and simple alternative access to the target
compound.
Acknowledgment
We thank the University of Alabama at Birmingham for support.
Supplementary data
Supplementary data associated with this article can be found, in
References and notes
Scheme 2. Reagents and conditions: (a) HNO3/H2SO4, 0–25 °C, 2 h, 91%; (b)
SnCl2Á2H2O, HCl (conc.), 60 °C, 40 min, 82%; (c) (1-ethoxycyclopropoxy)trimethyl-
silane, AcOH, MeOH, 67–69 °C, 3 h; (d) (i) NaBH4, BF3ÁEt2O, THF, 5 °C, 1 h; (ii) 5, THF,
5–10 °C, 25 °C for 5 h, reflux for 2 h, 68% from 4 to 6; (e) diethyl ethoxymethyl-
enemalonate, Py, 150 °C, 7.5 h, 77%; (f) polyphosphoric acid, hexane, 120 °C, 3.5 h,
37%; (g) (i) 4-hydroxyphenylboronic acid, Pd(PPh3)4, K2CO3, THF, 110 °C (sealed),
8 h, 64%; (ii) HCl (10% aq), THF, 70 °C, 1 h, 89%.
1. (a) Gellert, M. Annu. Rev. Biochem. 1981, 50, 879; (b) Wang, J. C. J. Biol. Chem.
1991, 266, 6659.
2. (a) Deweese, J. E.; Osheroff, N. Nucleic Acids Res. 2009, 37, 738; (b) Nitiss, J. L. Nat.
Rev. Cancer 2009, 9, 338; (c) Tse-Dinh, Y.-C. Infect. Disorders-Drug Targets 2007, 7,
3; (d) Denny, W. A. Exp. Opin. Emerg. Drugs 2004, 9, 105; (e) Capranico, G.;
Zagotto, G.; Palumbo, M. Curr. Med. Chem.-Anti-Cancer Agents 2004, 4, 335; (f)
Andoh, T. Ed., DNA Topoisomerases in Cancer Therapy; Kumwer Academic/
Plenum: New York, 2003; (g) Walker, J. V.; Nitiss, J. L. Cancer Invest. 2002, 20,
570; (h) Topcu, Z. J. Clin. Pharmacol. Ther. 2001, 26, 405; (i) Fortune, J. M.;
Osheroff, N. Prog. Nucl. Acid Res. Mol. Biol. 2000, 64, 221; (j) Schneider, E.; Hsiang,
Y.-H.; Liu, L. F. Adv. Pharmocol. 1990, 21, 149.
fluoro-7-(4-hydroxyphenyl)-4-quinolone-3-carboxylic acid (2),
one of the most investigated quinolones.
The synthesis began with the commercially available compound
2-bromo-1,3-difluorobenzene (3) (Scheme 2). Nitration of 3 with
nitric acid/sulfuric acid provided the corresponding nitro com-
pound 2-bromo-1,3-difluoro-4-nitrobenzene in 91% yield. Subse-
quent reduction with tin (II) chloride in concentrated HCl at
60 °C produced the 3-bromo-2,4-difluoroaniline 4 in 81% yield.
Installation of the cyclopropyl group onto the aniline nitrogen
was accomplished with a two-step sequence. First, the aniline 4 re-
acted with (1-ethoxycyclopropoxy)trimethylsilane in acetic acid/
methanol at 67 °C. The obtained intermediate 5 was treated with
sodium borohydride (NaBH4) in the presence of trifluoroborane
etherate (BF3ÁOEt2) to provide the desired 3-bromo-N-cyclopro-
pyl-2,4-difluoroaniline (6) in 68% yield over two steps.6 Reaction
of 6 and diethyl ethoxymethylenemalonate at 150 °C led to 7 in
77% yield. Cyclization of 7 to 1 proved to be challenging. Neither
heating 7 in diphenyl ether in the range 250–280 °C3c nor reactions
of 7 in oleum or chlorosulfonic acid could generate 1.7 Eventually,
this key intermediate 1 was obtained in 37% yield from the reac-
tion carried out in polyphosphoric acid at 120 °C. From compound
1, CP-115,953 was conveniently obtained in 57% yield from Suzuki
reaction with 4-hydroxyphenylboronic acid followed by hydrolysis
3. (a) Barrett, J. F.; Gootz, T. D.; McGuirk, P. R.; Farrell, C. A.; Sokolowski, S. A.
Antimicrob. Agents Chemother. 1989, 33, 1697; (b) Barrett, J. F.; Sutcliffe, J. A.;
Gootz, T. D. Antimicrob. Agents Chemother. 1990, 34, 1; (c) Wentland, M. P.;
Lesher, G. Y.; Reuman, M.; Gruett, M. D.; Singh, B.; Aldous, S. C.; Dorff, P. H.;
Rake, J. B.; Coughlin, S. A. J. Med. Chem. 1993, 36, 2801; (d) Elsea, S. H.; McGuirk,
P. R.; Gootz, T. D.; Moynihan, M.; Osheroff, N. Antimicrob. Agents Chemother.
1993, 37, 2179; (e) Anquetin, G.; Rouquayrol, M.; Mahmoudi, N.; Santillana-
Hayat, M.; Gozalbes, R.; Greiner, J.; Farhati, K.; Derouin, F.; Guedj, R.; Vierling, P.
Bioorg. Med. Chem. Lett. 2004, 14, 2773.
4. (a) Stern, E.; Muccioli, G. G.; Bosier, B.; Hamtiaux, L.; Millet, R.; Poupaert, J. H.;
Henichart, J.-P.; Depreux, P.; Goossens, J.-F.; Lambert, D. M. J. Med. Chem. 2007,
50, 5471; (b) Pasquini, S.; Botta, L.; Semeraro, T.; Mugnaini, C.; Ligresti, A.;
Palazzo, E.; Maione, S.; Di Marzo, V.; Corelli, F. J. Med. Chem. 2008, 51, 5075.
5. (a) Grohe, K.; Heitzer, H. Liebigs Ann. Chem. 1987, 29; (b) Schwalbe, T.;
Kadzimirsz, D.; Jas, G. QSAR Comb. Sci. 2005, 24, 758; (c) Zhang, Z.; Zhou, W.
Tetrahedron Lett. 2005, 46, 3855; (d) Sanchez, J. P.; Gogliotti, R. D.; Domagala, J.
M.; Gracheck, S. J.; Huband, M. D.; Sesnie, J. A.; Cohen, M. A.; Shapiro, M. A. J.
Med. Chem. 1995, 38, 4478; (e) Lesher, G.Y.; Singh, B.; Reuman, M.; Daum, S. J.
U.S. Pat. Appl. 417669A2, 1990.; (f) Gilligan, P. J.; Witty, M. J.; McGuirk, P. R. Eur.
Pat. Appl. 184384, 1985.; (g) Schriewer, M.; Petersen, U.; Grohe, K.; Krebs, A. Eur.
Pat. Appl. 332033, 1989.; (h) McGuirk, P. R. Eur. Pat. Appl. 348088, 1989.
6. Yoshida, Y.; Umezu, K.; Hamada, Y.; Atsumi, N.; Tabuchi, F. Synlett 2003, 2139.
7. Saukaitis, J. C.; Gupton, F. B. U. S. Pat. Appl. 5430152, 1995.
8. Wiles, J. A.; Wang, Q.; Lucien, E.; Hashimoto, A.; Song, Y.; Cheng, J.; Marlor, C. W.;
Ou, Y.; Podos, S. D.; Thanassi, J. A.; Thoma, C. L.; Deshpande, M.; Pucci, M. J.;
Bradbury, B. J. Bioorg. Med. Chem. Lett. 2006, 16, 1272.